
(a)
To find: The vertical and the horizontal asymptotes.
(a)

Answer to Problem 40E
The horizontal asymptotes are
Explanation of Solution
Given:
The function is
Calculation:
To find the horizontal asymptote, determine
So,
Since the function is a simple exponential function, no vertical asymptote exists.
(b)
To find: The intervals of increase and decrease.
(b)

Answer to Problem 40E
The function is increasing for all x .
Explanation of Solution
Given:
The function is
Calculation:
To find the intervals of increase and decrease, determine the derivative of
Since
(c)
To find: The
(c)

Answer to Problem 40E
No
Explanation of Solution
Given:
The function is
Calculation:
Since
(d)
To find: The intervals of concavity and the inflection points.
(d)

Answer to Problem 40E
The function
Explanation of Solution
Given:
The function is
Calculation:
To find the intervals of concavity, determine the second derivative of
Now to determine the points where
So,
(e)
To sketch: The graph of
(e)

Explanation of Solution
Given:
The function is
Calculation:
To graph of
Figure 1
Chapter 4 Solutions
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
- Consider the following system of equations, Ax=b : x+2y+3z - w = 2 2x4z2w = 3 -x+6y+17z7w = 0 -9x-2y+13z7w = -14 a. Find the solution to the system. Write it as a parametric equation. You can use a computer to do the row reduction. b. What is a geometric description of the solution? Explain how you know. c. Write the solution in vector form? d. What is the solution to the homogeneous system, Ax=0?arrow_forward2. Find a matrix A with the following qualities a. A is 3 x 3. b. The matrix A is not lower triangular and is not upper triangular. c. At least one value in each row is not a 1, 2,-1, -2, or 0 d. A is invertible.arrow_forwardFind the exact area inside r=2sin(2\theta ) and outside r=\sqrt(3)arrow_forward
- A 20 foot ladder rests on level ground; its head (top) is against a vertical wall. The bottom of the ladder begins by being 12 feet from the wall but begins moving away at the rate of 0.1 feet per second. At what rate is the top of the ladder slipping down the wall? You may use a calculator.arrow_forwardExplain the focus and reasons for establishment of 12.4.1(root test) and 12.4.2(ratio test)arrow_forwarduse Integration by Parts to derive 12.6.1arrow_forward
- Explain the relationship between 12.3.6, (case A of 12.3.6) and 12.3.7arrow_forwardExplain the key points and reasons for the establishment of 12.3.2(integral Test)arrow_forwardUse 12.4.2 to determine whether the infinite series on the right side of equation 12.6.5, 12.6.6 and 12.6.7 converges for every real number x.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





