
Concept explainers
To calculate: The absolute maximum value of curve,

Answer to Problem 28E
The maximum value with six decimal is
Explanation of Solution
Given information:
The curve is given as:
Formula used:
Newton’s Method:
We seek a solution of
For
Absolute Maximum Value: The critical numbers of function f within the interval
Calculation:
Consider the curve ,
Now,
Hence, we get the critical numbers from
Therefore,
Now, let initial approximation be
For
The second approximation is
Let
For
The third approximation is
The function values at critical numbers and endpoints are:-
So, at end intervals
At critical point
Therefore, the absolute maximum value of curve
Chapter 4 Solutions
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





