
Concept explainers
To calculate:The particle position after

Answer to Problem 42E
The position function of particle after
Explanation of Solution
Given information:
The acceleration function of particle given as:
Formula used:
The object has position function
The acceleration function is
Calculation:
Consider the acceleration function,
For the position function firstly calculate the velocity function,
As, velocity function is an antiderivative of acceleration.
Therefore, integrate the equation
As, the position function is an antiderivative of the velocity function.
Therefore, integrate the equation
Apply the initial velocity condition
Put the value of
Apply the initial displacement
Put the value of
Thus, the position function of particle after
Chapter 4 Solutions
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





