
A short column is made by nailing four 1 × 4-in. planks to a 4 × 4-in. timber. Using an allowable stress of 600 psi, determine the largest compressive load P that can be applied at the center of the top section of the timber column as shown if (a) the column is as described, (b) plank 1 is removed, (c) planks 1 and 2 are removed, (d) planks 1, 2, and 3 are removed, (e) all planks are removed.
Fig. P4.112
(a)

Find the largest compressive load P that can be applied at the center of the top section of the timber column.
Answer to Problem 112P
The largest compressive load P is
Explanation of Solution
Given information:
The compressive load P is
The allowable stress
The width
The depth
The width
The depth
Calculation:
Sketch the centric loading as shown in Figure 1.
Refer to Figure 1.
Find the area of the timber section using the relation:
Substitute
Calculate the largest compressive load P using the relation:
Substitute
Thus, the largest compressive load P is
(b)

Find the largest compressive load P that can be applied at the center of the top section of the timber column without plank 1.
Answer to Problem 112P
The largest compressive load P that can be applied at the center of the top section of the timber column without plank 1 is
Explanation of Solution
Calculation:
Sketch the Eccentric loading as shown in Figure 2.
Find the area of the timber section using the relation:
Substitute
Refer to Figure 2.
Find the centroid
Substitute
Refer to Figure 2.
Find the moment of inertia
Substitute
Find the moment of inertia
Substitute
Find the total moment of inertia as follows:
Substitute
Calculate the largest compressive load P that can be applied at the center of the top section of the timber column without plank 1using the relation:
Here, e is the eccentricity, I is the moment of inertia, A is the area of cross section, and c is the distance between the centroid from extreme fibre.
Substitute
Thus, the largest compressive load P that can be applied at the center of the top section of the timber column without plank 1 is
(c)

Find the largest compressive load P that can be applied at the center of the top section of the timber column without plank 1and 2.
Answer to Problem 112P
The largest compressive load P that can be applied at the center of the top section of the timber column without plank 1 and 2 is
Explanation of Solution
Calculation:
Sketch the centric loading as shown in Figure 3.
Refer to Figure 3.
Find the area of the timber section using the relation:
Substitute
Calculate the largest compressive load P using the relation:
Substitute
Thus, the largest compressive load P is
(d)

Find the largest compressive load P that can be applied at the center of the top section of the timber column without plank , 2, and 3.
Answer to Problem 112P
The largest compressive load P that can be applied at the center of the top section of the timber column without plank 1, 2, and 3 is
Explanation of Solution
Calculation:
Sketch the Eccentric loading as shown in Figure 4.
Refer to Figure 4.
Find the area of the timber section using the relation:
Substitute
Find the centroid
Determine the moment of inertia (I) of eccentric section as follows:
Substitute
Calculate the largest compressive load P that can be applied at the center of the top section of the timber column without plank , 2, and 3 using the relation:
Here, e is the eccentricity, I is the moment of inertia, A is the area of cross section, and c is the distance between the centroid from extreme fibre.
Substitute
The largest compressive load P that can be applied at the center of the top section of the timber column without plank 1, 2, and 3 is
(e)

Find the largest compressive load P that can be applied at the center of the top section of the timber all columns are removed.
Answer to Problem 112P
The largest compressive load P that can be applied at the center of the top section of the timber all columns are removed is
Explanation of Solution
Calculation:
Sketch the centric loading as shown in Figure 5.
Refer to Figure 5.
Find the area of the timber section using the relation:
Substitute
Calculate the largest compressive load P using the relation:
Substitute
Thus, the largest compressive load P that can be applied at the center of the top section of the timber all columns are removed is
Want to see more full solutions like this?
Chapter 4 Solutions
EBK MECHANICS OF MATERIALS
- Question 6 I need to show all work step by step dynamicsarrow_forwardQu. 3 The automobile is originally at rest s = 0. If it then starts to increase its speed at i = (0.05t2)ft/s?, where t is in seconds, determine the magnitudes of its velocity and acceleration at s = 550 ft. please show all work from dynamics step by step formulaarrow_forwardquestion 5 and 6 from dynamics I need to show all work step by step problemsarrow_forward
- Study Area Document Sharing User Settings Access Pearson mylabmastering.pearson.com P Pearson MyLab and Mastering The crash cushion for a highway barrier consists of a nest of barrels filled with an impact-absorbing material. The barrier stopping force is measured versus the vehicle penetration into the barrier. (Figure 1) Part A P Course Home b My Questions | bartleby Review Determine the distance a car having a weight of 4000 lb will penetrate the barrier if it is originally traveling at 55 ft/s when it strikes the first barrel. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 36 μΑ S = Value Units Submit Request Answer Provide Feedback ? Next >arrow_forwardWater is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 12 MPa, and the condenser pressure is 8 kPa. The mass flow rate of steam entering the turbine is 50 kg/s. Determine: (a) the net power developed, in kW. (b) the rate of heat transfer to the steam passing through the boiler, in kW. (c) the percent thermal efficiency. (d) the mass flow rate of condenser cooling water, in kg/s, if the cooling water undergoes a temperature increase of 18°C with negligible pressure change in passing through the condenser.arrow_forward4. The figure below shows a bent pipe with the external loading FA 228 lb, and M₁ = M₂ = 1 kip-ft. The force Fernal loading FA = 300 lb, FB: parallel to the y-axis, and and yc = 60°. = 125 lb, Fc = acts parallel to the x-z plane, the force FB acts Cartesian resultan Coordinate direction angles of Fc are ac = 120°, ẞc = 45°, a. Compute the resultant force vector of the given external loading and express it in EST form. b. Compute the resultant moment vector of the given external loading about the origin, O, and express it in Cartesian vector form. Use the vector method while computing the moments of forces. c. Compute the resultant moment vector of the given external loading about the line OA and express it in Cartesian vector form. :00 PM EST k ghoufran@buffaternal du 2 ft M₁ A 40° FA M2 C 18 in 1 ft Fc 25 houfran@bald.edu - Feb 19, 3 ft FBarrow_forward
- The differential equation of a cruise control system is provided by the following equation: Find the closed loop transfer function with respect to the reference velocity (vr) . a. Find the poles of the closed loop transfer function for different values of K. How does the poles move as you change K? b. Find the step response for different values of K and plot in MATLAB. What can you observe? c. For the given transfer function, find tp, ts, tr, Mp . Plot the resulting step response. G(s) = 40/(s^2 + 4s + 40)arrow_forwardAuto Controls Perform the partial fraction expansion of the following transfer function and find the impulse response: G(s) = (s/2 + 5/3) / (s^2 + 4s + 6) G(s) =( 6s^2 + 50) / (s+3)(s^2 +4)arrow_forwardStudy Area Document Sharing User Settings mylabmastering.pearson.com Access Pearson P Pearson MyLab and Mastering The 150-lb skater passes point A with a speed of 6 ft/s. (Figure 1) Figure 1 of 1 Part A P Course Home b My Questions | bartleby Determine his speed when he reaches point B. Neglect friction. Express your answer to three significant figures and include the appropriate units. με ? VB = Value Units Submit Request Answer Part B Determine the normal force exerted on him by the track at this point. Express your answer to three significant figures and include the appropriate units. ☐ о Α NB = Value Units Submit Request Answer Provide Feedback ? ■Review Next >arrow_forward
- mylabmastering.pearson.com Access Pearson P Pearson MyLab and Mastering P Course Home b My Questions | bartleby Study Area Document Sharing User Settings The 100-kg crate is subjected to the forces shown. The crate is originally at rest. The coefficient of kinetic friction between the crate and the surface is μk = 0.2. (Figure 1) Part A Determine the distance it slides in order to attain a speed of 8.1 m/s. Express your answer to three significant figures and include the appropriate units. Figure 500 N 1 of 1 Α S = Value Units Submit Request Answer Provide Feedback ? ■Review Next >arrow_forwardThe differential equation of a DC motor can be described by the following equation Find the transfer function between the applied voltage ( Va)and the motor speed (thetadot m). What is the steady state speed of the motor after a voltage (Va = 10V) has been applied. Find the transfer function between the applied voltage (Va) and the shaft angle (thetadot m) .arrow_forwardStudy Area Document Sharing User Settings Access Pearson mylabmastering.pearson.com P Pearson MyLab and Mastering The crash cushion for a highway barrier consists of a nest of barrels filled with an impact-absorbing material. The barrier stopping force is measured versus the vehicle penetration into the barrier. (Figure 1) Part A P Course Home b My Questions | bartleby Review Determine the distance a car having a weight of 4000 lb will penetrate the barrier if it is originally traveling at 55 ft/s when it strikes the first barrel. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 36 μΑ S = Value Units Submit Request Answer Provide Feedback ? Next >arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





