4.19 and 4.20 Knowing that for the extruded beam shown the allowable stress is 120 Mpa in tension and 150 Mpa in compression, determine the largest couple M that can be applied.
Fig. P4.19
Find the largest couple moment (M) that can be applied to the beam.
Answer to Problem 19P
The largest couple moment (M) applied to the beam is
Explanation of Solution
Given information:
The allowable stress in tension is
The allowable stress in compression is
Calculation:
Show the cross-section of the material as shown in figure 1.
Refer Figure 1.
Calculate the value of
Substitute
Calculate the moment of inertia
Substitute
Calculate the moment of inertia
Substitute
Calculate the total moment of inertia (I) of the cross-section as follows:
Substitute
Refer Figure 1.
Consider the distance between the neutral axis and the top fiber and bottom fiber of the beam is
Calculate
Calculate the maximum moment
Substitute
Calculate the value of stress
Substitute
Compare
Get the largest moment applied on the beam as
Thus, the largest couple moment (M) applied to the beam is
Want to see more full solutions like this?
Chapter 4 Solutions
EBK MECHANICS OF MATERIALS
- The beam shown is made of a nylon for which the allowable stress is 24 MPa in tension and 30 MPa in compression. Determine the largest couple M that can be applied to the beam. Solve Prob. 4.16, assuming that d = 40 mm. For Problem 4.17, flip the T cross section upside down. Do not reverse the way thecoupleis applied.(a) Determinethe largest coupleMthat can be applied. (b) Determine the largest compressive stress. (c) Determine the largesttensile stress. (d)Replace this beam by another that isrectangularwith the same total area,supportcanhave thesame maximum coupleM.Make acentrally locatedcircular extrusion of diameter:(d1)Determinethe diameter ofthis circle.(d2)Determinethe lengthsof the sidesof thisrectanglearrow_forwardFast.arrow_forward4.39 plzarrow_forward
- answer 4.4arrow_forward3 Knowing that for the extruded beam shown the allowable stress is 120 MPa in tension and 149 MPa in compression, determine the largest couple M that can be applied. 10 points 80 mm- 40 mm 54 mm The largest couple M that can be applied is 8.5824 KN-m.arrow_forward4.99 plzarrow_forward
- Knowing that for the beam shown the allowable stress is 80 MPa in tension and 100 MPa in compression, determine the largest couple M that can be applied. step by step please!!arrow_forwardM = 500 Nm PROBLEM 4.2 В Knowing that the couple shown acts in the vertical plane, determine the stress at (a) point A, and (b) point B. [Ans. (a) -116.4 MPa (b) -87.3 MPa] 30 mm 40 mm Fig. P4.2arrow_forwardSolve Prob. 4.75 when θ = 30° and P = 150 N.arrow_forward
- 5.86 The cast iron inverted T-section supports two concentrated loads of magnitude P. The working stresses are 48 MPa in tension, 140 MPa in compression, and 30 MPa in shear. (a) Show that the neutral axis of the cross section is located at d ¼ 48:75 mm and that the moment of inertia of the cross-sectional area about this axis is I ¼ 11:918 106 mm4. (b) Find the maximum allowable value of P.arrow_forward5.86 The cast iron inverted T-section supports two concentrated loads of magni- tude P. The working stresses are 48 MPa in tension, 140 MPa in compression, and 30 MPa in shear. (a) Show that the neutral axis of the cross section is located at d = 48.75 mm and that the moment of inertia of the cross-sectional area about this axis is I = 11.918 x 106 mm“. (b) Find the maximum allowable value of P. 1.0 m 1.0 m 15 mm 3 m 150 mm NA- d 15 mm 150 mm FIG. P5.86arrow_forwardA 1600-lb-in. couple is applied to a wooden beam, of rectangular cross section 1.5 by 3.5 in., in a plane forming an angle of 308 with the vertical (Fig. ). Determine (a) the maximum stress in the beam and (b) the angle that the neutral surface forms with the horizontal planearrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY