Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 45, Problem 8OQ
To determine
Which particle will undergo for great deflection.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Is it true that a magnetic field can cause an increase in the kinetic energy of a charged particle? Why or why not?
Magnetic resonance imaging (MRI) is one of the most useful and rapidly growing medical imaging
tools. It non-invasively produces two-dimensional and three-dimensional images of the body that
provide important medical information with none of the hazards of x-rays. MRI is based on an effect
called nuclear magnetic resonance (NMR) in which an externally applied magnetic field interacts with
the magnetic fields of nuclei of certain atoms, particularly those of hydrogen (protons). The external
magnetic field is created by a large coil. This field interacts with the hydrogen atoms in the patient's
body to form images.
a) To see why an MRI utilizes iron to increase the magnetic field created by a coil, calculate the
current needed in a 420-loop-per-meter circular coil 0.66 m in radius to create a 1.3 T field (typical of
an MRI instrument) at its center with no iron present.
/=
A
Introducing ferromagnetic materials inside coils greatly increases the magntic field inside the coil for
a small…
Magnetic resonance imaging (MRI) is one of the most useful and rapidly growing medical imaging
tools. It non-invasively produces two-dimensional and three-dimensional images of the body that
provide important medical information with none of the hazards of x-rays. MRI is based on an effect
called nuclear magnetic resonance (NMR) in which an externally applied magnetic field interacts with
the magnetic fields of nuclei of certain atoms, particularly those of hydrogen (protons). The external
magnetic field is created by a large coil. This field interacts with the hydrogen atoms in the patient's
body to form images.
a) To see why an MRI utilizes iron to increase the magnetic field created by a coil, calculate the
current needed in a 400-loop-per-meter circular coil 0.665 m in radius to create a 1.1 T field (typical of
an MRI instrument) at its center with no iron present.
|=
A
Introducing ferromagnetic materials inside coils greatly increases the magntic field inside the coil for
a small…
Chapter 45 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 45.1 - When a nucleus undergoes fission, the two daughter...Ch. 45.2 - Prob. 45.2QQCh. 45.3 - Prob. 45.3QQCh. 45.4 - Prob. 45.4QQCh. 45 - Prob. 1OQCh. 45 - Prob. 2OQCh. 45 - Prob. 3OQCh. 45 - Prob. 4OQCh. 45 - Prob. 5OQCh. 45 - Prob. 6OQ
Ch. 45 - Prob. 7OQCh. 45 - Prob. 8OQCh. 45 - Prob. 9OQCh. 45 - Prob. 1CQCh. 45 - Prob. 2CQCh. 45 - Prob. 3CQCh. 45 - Prob. 4CQCh. 45 - Prob. 5CQCh. 45 - Prob. 6CQCh. 45 - Prob. 7CQCh. 45 - Prob. 8CQCh. 45 - Prob. 1PCh. 45 - Prob. 2PCh. 45 - Prob. 3PCh. 45 - Prob. 4PCh. 45 - Prob. 5PCh. 45 - Prob. 6PCh. 45 - Prob. 7PCh. 45 - Prob. 8PCh. 45 - Prob. 9PCh. 45 - Prob. 10PCh. 45 - Prob. 11PCh. 45 - Prob. 12PCh. 45 - Prob. 13PCh. 45 - Prob. 14PCh. 45 - Prob. 15PCh. 45 - Prob. 16PCh. 45 - Prob. 18PCh. 45 - Prob. 19PCh. 45 - Prob. 20PCh. 45 - Prob. 21PCh. 45 - Prob. 22PCh. 45 - Prob. 23PCh. 45 - Prob. 24PCh. 45 - Prob. 25PCh. 45 - Prob. 26PCh. 45 - Prob. 27PCh. 45 - Prob. 28PCh. 45 - Prob. 29PCh. 45 - Prob. 30PCh. 45 - Prob. 31PCh. 45 - Prob. 32PCh. 45 - Prob. 33PCh. 45 - Prob. 34PCh. 45 - Prob. 35PCh. 45 - Prob. 36PCh. 45 - Prob. 37PCh. 45 - Prob. 41PCh. 45 - Prob. 42PCh. 45 - Prob. 43PCh. 45 - Prob. 44PCh. 45 - Prob. 45PCh. 45 - Prob. 46APCh. 45 - Prob. 47APCh. 45 - Prob. 48APCh. 45 - Prob. 49APCh. 45 - Prob. 51APCh. 45 - Prob. 52APCh. 45 - Prob. 53APCh. 45 - Prob. 54APCh. 45 - Prob. 55APCh. 45 - Prob. 56APCh. 45 - Prob. 57APCh. 45 - Prob. 58APCh. 45 - Prob. 59APCh. 45 - Prob. 60APCh. 45 - Prob. 61APCh. 45 - Prob. 62APCh. 45 - Prob. 63APCh. 45 - Prob. 64APCh. 45 - Prob. 65APCh. 45 - Prob. 66APCh. 45 - Prob. 67APCh. 45 - Prob. 68APCh. 45 - Prob. 69APCh. 45 - Prob. 70APCh. 45 - Prob. 71APCh. 45 - Prob. 72APCh. 45 - Prob. 73AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- , A proton, deuteron, and an alpha-particle ae all accelerated from rest through the same potential difference. They then enter the same magnetic field, moving perpendicular to it. Compute the ratios of the radii of their circular paths. Assume that md= 2wmp and ma= 4mp.arrow_forwardAn electron is accelerated through 2.40 103 V from rest and then enters a uniform 1.70-T magnetic field. What are (a) the maximum and (b) the minimum values of the magnetic force this particle experiences?arrow_forwardWhat magnetic field is required in order to confine a proton moving with a speed of 4.0 × 106 m/s to a circular orbit of radius 10 cm?arrow_forward
- An electron moves in a circular path perpendicular to a constant magnetic field of magnitude 1.00 mT. The angular momentum of the electron about the center of the circle is 4.00 1025 kg m2/s. Determine (a) the radius of the circular path and (b) the speed of the electron.arrow_forwardAn electron of kinetic energy 2000 eV passes between parallel plates that are 1.0 an apart and kept at a potential difference of 300 V. What is the strength of the uniform magnetic field B that will allow the electron to travel undeflected through the plates? Assume E and B are perpendicular.arrow_forwardAn alpha-particle ( m=6.641027kg , q=3.21019C ) travels in a circular path of radius 25 cm in a uniform magnetic field of magnitude 1.5 T. (a) What is the speed of the particle? (b) What is the kinetic energy in electron-volts? (c) Through what potential difference must the particle be accelerated in order to give it this kinetic energy?arrow_forward
- A mass spectrometer (Fig. 30.40, page 956) operates with a uniform magnetic field of 20.0 mT and an electric field of 4.00 103 V/m in the velocity selector. What is the radius of the semicircular path of a doubly ionized alpha particle (ma = 6.64 1027 kg)?arrow_forwardCheck Your Understanding Repeat the previous problem with the magnetic field in the x-direction rather than in the z-direction. Check your answers with RHR-1.arrow_forwardThe strengths of the fields in the velocity selector of a Bainbridge mass spectrometer are B = 0.500 T and E=1.2105 Van, and tire strength of the magnetic field that separates the ions is Bo=0.750 T. A stream of singly charged Li ions is found to bend in a circular arc of radius 2.32 cm. What is the mass of the Li ions?arrow_forward
- Check Your Understanding In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field? (b) A maximum energy of the dipole?arrow_forwardReview. A particle with a mass of 2.00 1016 kg and a charge of 30.0 nC starts from rest, is accelerated through a potential difference V, and is fired from a small source in a region containing a uniform, constant magnetic field of magnitude 0.600 T. The particle's velocity is perpendicular to the magnetic field lines. The circular orbit of the panicle as it returns to the location of the source encloses a magnetic flux of 15.0 Wb. (a) Calculate the particles speed. (b) Calculate the potential difference through which the particle was accelerated inside the source.arrow_forwardConsider the mass spectrometer shown schematically in Active Figure 22.12. The magnitude of the electric field between the plates of the velocity selector is 2.50 103 V/m, and the magnetic field in both the velocity selector and the deflection chamber has a magnitude of 0.035 0 T. Calculate the radius of the path for a singly charged ion having a mass m = 2.18 1026 kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning