Concept explainers
(a)
Find the closest distance between the center of the nuclei.
(a)
Answer to Problem 26P
The closest distance between the center of the nuclei is
Explanation of Solution
The deuterium-tritium fusion reaction,
Here, the tritium nucleus is at rest. The mass number of deuterium is
Write the formula for radius of the nuclei
Where,
Conclusion:
The closest distance between the center of the two nuclei is
Substitute equation (I) in the above equation and solve
Substitute
Thus, the closest distance between the center of the nuclei is
(b)
Find the electric potential energy at the closest distance between the center of the nuclei.
(b)
Answer to Problem 26P
The electric potential energy at the closest distance between the center of the nuclei is
Explanation of Solution
The closest distance between the center of the nuclei is
Write the formula for potential energy
Where,
Conclusion:
Substitute
Thus, the electric potential energy at the closest distance between the center of the nuclei is
(c)
The speed of the deuterium and tritium nuclei as they touch.
(c)
Answer to Problem 26P
The speed of the deuterium and tritium nuclei as they touch is
Explanation of Solution
The mass of deuterium is approximately
According to the law of conservation of momentum,
Substitute
Thus, the speed of the deuterium and tritium nuclei as they touch is
(d)
Find the minimum initial deuteron energy required to achieve fusion.
(d)
Answer to Problem 26P
The minimum initial deuteron energy required to achieve fusion is
Explanation of Solution
According to the law of conservation of energy,
Here,
The deuteron has been moving from the beginning (infinity), therefore the initial potential energy of deuteron is zero,
Write the formula for kinetic energy
Where,
Conclusion:
Substituting equation (V) in (IV),
Substitute (III) in the above equation,
Substitute
Thus, the minimum initial deuteron energy required to achieve fusion is
(e)
Why the fusion reaction occurs at much lower deuteron energies then the energy calculated in part (d).
(e)
Answer to Problem 26P
The fusion reaction occurs at much lower deuteron energies then the energy calculated must be possibly by tunneling through the potential energy barrier.
Explanation of Solution
Classically, the particle with energy
Therefore, the fusion reaction occurs at much lower deuteron energies then the energy calculated must be possibly by tunneling through the potential energy barrier.
Want to see more full solutions like this?
Chapter 45 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- I do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forwardPart A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/Carrow_forward
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning