Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 45, Problem 69AP
(a)
To determine
The required amount of cooling water.
(b)
To determine
The magnitude of rate of fuel burning.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. Suppose a woman does 500 J of work and -9400 J of heat transfer occurs into the environment in
the process.
(a) What is the decrease in her internal energy, assuming no change in temperature or consumption
of food? (That is, there is no other energy transfer.)
ΔΕint
✓ J
(b) The internal energy is stored energy due to food intake. Treating the change in internal energy as
the input energy and work done as output, what is her efficiency?
Efficiency, Eff:
%
(c) What physics law did you use in this problem?
Zeroth Law of Thermodynamics
First Law of Thermodynamics
Second Law of Thermodynamics
By jogging, a girl is converting food energy into internal energy at the rate of 399 kcal/h above her basal metabolic rate (BMR). Some of this additional internal energy immediately goes into work done at a rate of 56.1 W. The rest of this additional energy would go into raising her temperature, but it is
instead eliminated by evaporation of perspiration to keep her body temperature constant. Assume that the heat of evaporation of water at body temperature is equal to its heat of vaporization at 100°C.
(a) Determine the hourly rate (in kg/h) at which water must evaporate from her skin.
kg/h
(b) When fat is metabolized, hydrogen atoms in fat molecules are transferred to oxygen to form water. Assume that the metabolism of 1.00 g of fat generates 9.00 kcal of energy and produces 1.00 g of water. What percent of the water needed is generated by burning fat?
A liquid food product (P) is being cooled from 80°C to 30°C in an indirect heat exchanger using cold water (W) as a cooling medium. If the product mass flow rate is 1800 kg/h, determine the water flow rate required to accomplish product cooling if the water is allowed to increase its temperature from 10°C to 20°C in the heat exchanger. The specific heat of the product is 3.8 kJ/kg K, and the value for water is 4.1kJ/kg K.
Chapter 45 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 45.1 - When a nucleus undergoes fission, the two daughter...Ch. 45.2 - Prob. 45.2QQCh. 45.3 - Prob. 45.3QQCh. 45.4 - Prob. 45.4QQCh. 45 - Prob. 1OQCh. 45 - Prob. 2OQCh. 45 - Prob. 3OQCh. 45 - Prob. 4OQCh. 45 - Prob. 5OQCh. 45 - Prob. 6OQ
Ch. 45 - Prob. 7OQCh. 45 - Prob. 8OQCh. 45 - Prob. 9OQCh. 45 - Prob. 1CQCh. 45 - Prob. 2CQCh. 45 - Prob. 3CQCh. 45 - Prob. 4CQCh. 45 - Prob. 5CQCh. 45 - Prob. 6CQCh. 45 - Prob. 7CQCh. 45 - Prob. 8CQCh. 45 - Prob. 1PCh. 45 - Prob. 2PCh. 45 - Prob. 3PCh. 45 - Prob. 4PCh. 45 - Prob. 5PCh. 45 - Prob. 6PCh. 45 - Prob. 7PCh. 45 - Prob. 8PCh. 45 - Prob. 9PCh. 45 - Prob. 10PCh. 45 - Prob. 11PCh. 45 - Prob. 12PCh. 45 - Prob. 13PCh. 45 - Prob. 14PCh. 45 - Prob. 15PCh. 45 - Prob. 16PCh. 45 - Prob. 18PCh. 45 - Prob. 19PCh. 45 - Prob. 20PCh. 45 - Prob. 21PCh. 45 - Prob. 22PCh. 45 - Prob. 23PCh. 45 - Prob. 24PCh. 45 - Prob. 25PCh. 45 - Prob. 26PCh. 45 - Prob. 27PCh. 45 - Prob. 28PCh. 45 - Prob. 29PCh. 45 - Prob. 30PCh. 45 - Prob. 31PCh. 45 - Prob. 32PCh. 45 - Prob. 33PCh. 45 - Prob. 34PCh. 45 - Prob. 35PCh. 45 - Prob. 36PCh. 45 - Prob. 37PCh. 45 - Prob. 41PCh. 45 - Prob. 42PCh. 45 - Prob. 43PCh. 45 - Prob. 44PCh. 45 - Prob. 45PCh. 45 - Prob. 46APCh. 45 - Prob. 47APCh. 45 - Prob. 48APCh. 45 - Prob. 49APCh. 45 - Prob. 51APCh. 45 - Prob. 52APCh. 45 - Prob. 53APCh. 45 - Prob. 54APCh. 45 - Prob. 55APCh. 45 - Prob. 56APCh. 45 - Prob. 57APCh. 45 - Prob. 58APCh. 45 - Prob. 59APCh. 45 - Prob. 60APCh. 45 - Prob. 61APCh. 45 - Prob. 62APCh. 45 - Prob. 63APCh. 45 - Prob. 64APCh. 45 - Prob. 65APCh. 45 - Prob. 66APCh. 45 - Prob. 67APCh. 45 - Prob. 68APCh. 45 - Prob. 69APCh. 45 - Prob. 70APCh. 45 - Prob. 71APCh. 45 - Prob. 72APCh. 45 - Prob. 73AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In 1993, the U.S. government instituted a requirement that all room air conditioners sold in the United States must have an energy efficiency ratio (EER) of 10 or higher. The EER is defined as the ratio of the cooling capacity of the air conditioner, measured in British thermal units per hour, or Btu/h, to its electrical power requirement in watts. (a) Convert the EER of 10.0 to dimensionless form, using the conversion 1 Btu = 1 055 J. (b) What is the appropriate name for this dimensionless quantity? (c) In the 1970s, it was common to find room air conditioners with EERs of 5 or lower. State how the operating costs compare for 10 000-Btu/h air conditioners with EERs of 5.00 and 10.0. Assume each air conditioner operates for 1 500 h during the summer in a city where electricity costs 17.0 per kWh.arrow_forwardOne of a dilute diatomic gas occupying a volume of 10.00 L expands against a constant pressure of 2.000 atm when it is slowly heated. If the temperature of the gas rises by 10.00 K and 400.0 J of heat are added in the process, what is its final volume?arrow_forwardAn aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forward
- For a temperature increase of 10 at constant volume, what is the heat absorbed by (a) 3.0 mol of a dilute monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and (c) 15 mol of a dilute polyatomic gas?arrow_forwardA solar hot-water-heating system consists of a hot-water tank and a solar panel. The tank is well insulated and has a time constant of 60 hr. The solar panel generates 2200 Btu/hr during the day, and the tank has a heat capacity of 3°F per thousand Btu. If the water in the tank is initially 105°F and the room temperature outside the tank is 81°F, what will be the temperature in the tank after 10 hr of sunlight? What is U(t), the rate of temperature change due to the solar heating panel? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. O A. U(t)= °F/hr OB. U(t) is unknown. xample Get more help Clear all Check answerarrow_forwardA 68 kg cyclist is pedaling down the road at 15 km/h, using a total metabolic power of 480 W. A certain fraction of this energy is used to move the bicycle forward, but the balance ends up as thermal energy in his body, which he must get rid of to keep cool. On a very warm day, conduction, convection, and radiation transfer little energy, and so he does this by perspiring, with the evaporation of water taking away the excess thermal energy. To keep from overheating, the cyclist must get rid of the excess thermal energy generated in his body. If he cycles at this rate for 2 hours, how many liters of water must he perspire, to the nearest 0.1 liter?A. 0.4 L B. 0.9 L C. 1.1 L D. 1.4 Larrow_forward
- A 68 kg cyclist is pedaling down the road at 15 km/h, using a total metabolic power of 480 W. A certain fraction of this energy is used to move the bicycle forward, but the balance ends up as thermal energy in his body, which he must get rid of to keep cool. On a very warm day, conduction, convection, and radiation transfer little energy, and so he does this by perspiring, with the evaporation of water taking away the excess thermal energy. As he cycles at a constant speed on level ground, at what rate is chemical energy being converted to thermal energy in his body, assuming a typical efficiency of 25% for the conversion of chemical energy to the mechanical energy of motion?A. 480 W B. 360 W C. 240 W D. 120 Warrow_forwardA 68 kg cyclist is pedaling down the road at 15 km/h, using a total metabolic power of 480 W. A certain fraction of this energy is used to move the bicycle forward, but the balance ends up as thermal energy in his body, which he must get rid of to keep cool. On a very warm day, conduction, convection, and radiation transfer little energy, and so he does this by perspiring, with the evaporation of water taking away the excess thermal energy. If the cyclist reaches his 15 km/h cruising speed by rolling down a hill, what is the approximate height of the hill?A. 22 m B. 11 m C. 2 m D. 1 marrow_forwardThe drinking water needs of a production facility with 20 employees is to be met by a bubbler-type water fountain. The refrigerated water fountain is to cool water from 22 to 8°C and supply cold water at a rate of 0.4 L per hour per person. Heat is transferred to the reservoir from the surroundings at 25°C at a rate of 45 W. If the COP of the refrigeration system is 2.9, determine the size of the compressor, in W, that will be suitable for the refrigeration system of this water cooler.arrow_forward
- According to the USDA, an average, \moderately active" college student needs to eat 2500 calories per day. These \calories" are actually kilocalories, or kcal; and, we prefer to use Joules (J) in geophysics. The conversion is 1 kcal = 4187 J. The average geothermal heat ux is 60 mW/m2. How large an area on Earth's surface releases the same amount of energy in one day as used by the average college student in a day?arrow_forwardA container holding 4.20 kg of water at 20.0°C is placed in a freezer that is kept at -20.0°C. The water freezes and comes to thermal equilibrium with the interior of the freezer. What is the minimum amount of electrical energy required by the freezer to do this if it operates between reservoirs at temperatures of 20.0°C and –-20.0°C? (Latent heat of fusion of ice = capacity of water = 4186 J/(kg K), specific heat capacity of ice = 2100 J/(kg K)). 333,700 J/ kg, specific heat kJarrow_forwardThe concrete slab of a basement is 11m long, 8 m wide and 0.2 m thick. During the winter, temperatures are nominally 17°C and 10°C at the top and bottom respectively. If the concrete has thermal conductivity of 1.4 W/m K, what is the rate of heat loss through the slab? If the basement is heated by a gas furnace operating at an efficiency of 90% using natural gas priced at Cg = Php 1.00/MJ, what is the daily cost of heat loss?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY