Concept explainers
The state of liquid water is changed from 50 psia and 50°F to 2000 psia and 100°F. Determine the change in the internal energy and enthalpy of water on the basis of the (a) compressed liquid tables, (b) incompressible substance approximation and property tables, and (c) specific-heat model.
(a)
The specific internal energy of water on the basis of the compressed liquid table.
The specific enthalpy of water on the basis of the compressed liquid table.
Answer to Problem 79P
The specific internal energy of water on the basis of the compressed liquid table is
The specific enthalpy of water on the basis of the compressed liquid table is
Explanation of Solution
Determine the change in an initial specific enthalpy of the liquid water.
Here, the specific enthalpy at 50 F temperature is
Determine the specific internal energy of water on the basis of the compressed liquid table.
Here, the initial specific internal energy of water is
Determine the specific enthalpy of water on the basis of the compressed liquid table.
Here, the initial specific enthalpy energy of water is
Conclusion:
From the Table A-4E, “Saturated water”, obtain the value of initial internal energy and enthalpy at temperature 50 F.
Substitute
From the Table A-7E, “Compressed liquid water”, obtain the value of final internal energy and enthalpy at pressure 2000 psia and temperature 100 F.
Substitute
Thus, the specific internal energy of water on the basis of the compressed liquid table is
Substitute
Thus, the specific enthalpy of water on the basis of the compressed liquid table is
(b)
The specific internal energy of water on the basis of the incompressible substance and property tables.
The specific enthalpy of water on the basis of the incompressible substance and property tables.
Answer to Problem 79P
The specific internal energy of water on the basis of the incompressible substance and property tables is
The specific enthalpy of water on the basis of the incompressible substance and property tables is
Explanation of Solution
Determine the specific internal energy of water on the basis of the incompressible substance and property tables.
Here, the initial specific internal energy of water is
Determine the specific enthalpy of water on the basis of the incompressible substance and property tables.
Here, the initial specific enthalpy energy of water is
Conclusion:
From the Table A-4E, “Saturated water”, obtain the value of initial internal energy and enthalpy at temperature 50 F and 100 F.
Substitute
Thus, the specific internal energy of water on the basis of the incompressible substance and property tables is
Substitute
Thus, the specific enthalpy of water on the basis of the incompressible substance and property tables is
(c)
The specific internal energy of water on the basis of the specific heat model.
Answer to Problem 79P
The specific internal energy of water on the basis of the specific heat model is
Explanation of Solution
Determine the specific heat of water.
Here, the specific heat of water is
Conclusion:
From the Table A-3E(a), “Properties of common liquids, solids, and foods”, obtain the value of specific heat of water is
Substitute
Thus, the specific internal energy of water on the basis of the specific heat model is
Want to see more full solutions like this?
Chapter 4 Solutions
Thermodynamics: An Engineering Approach
- Solve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forwardUniversity of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forward
- Solve this and show all of the workarrow_forwardNeed helparrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY