Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.5, Problem 47P
A fixed mass of an ideal gas is heated from 50 to 80°C at a constant volume of (a) 1 m3 and (b) 3 m3. For which case do you think the energy required will be greater? Why?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
(4) A mass of 3 kg of R-134a fill a piston-cylinder device with and initial volume
of 0.279 m³ at a temperature of – 12.73°C. The refrigerant is now heated until the
temperature is 40°C. The final volume of the R-134a is:
(a) 0.322 m³
(b) 0.350 m³
(c) 0.385 m³
(d) 0.412 m³
(e) 0.446 m³
41.394 kg per second of water at 0.03398675 kbarg and internal energy of 15000 kW is heated at constant pressure to saturated vapor and further heated at constant volume process until the pressure is quadrupled. Determine the ratio of the heat added during the constant volume process to the heat added during the constant pressure process.
For the steam table, please refer to the green book entitled " Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases"
A frictionless piston-cylinder device and a rigid tank contain 2 kmol of an ideal gas at the same temperature,
pressure, and volume. Now heat is transferred, and the temperature of both systems is raised by 10°C. Solve for
the amount of extra heat that must be supplied to the gas in the cylinder that is maintained at constant pressure.
Chapter 4 Solutions
Thermodynamics: An Engineering Approach
Ch. 4.5 - An ideal gas at a given state expands to a fixed...Ch. 4.5 - Nitrogen at an initial state of 300 K, 150 kPa,...Ch. 4.5 - 4–3 The volume of 1 kg of helium in a...Ch. 4.5 - 4–4E Calculate the total work, in Btu, for process...Ch. 4.5 - 4–5 A piston–cylinder device initially contains...Ch. 4.5 - A pistoncylinder device with a set of stops...Ch. 4.5 - 4–7 A piston–cylinder device initially contains...Ch. 4.5 - 4–8 A mass of 5 kg of saturated water vapor at 300...Ch. 4.5 - 1 m3 of saturated liquid water at 200C is expanded...Ch. 4.5 - A gas is compressed from an initial volume of 0.42...
Ch. 4.5 - A mass of 1.5 kg of air at 120 kPa and 24C is...Ch. 4.5 - During some actual expansion and compression...Ch. 4.5 - 4–14 A frictionless piston–cylinder device...Ch. 4.5 - Prob. 15PCh. 4.5 - During an expansion process, the pressure of a gas...Ch. 4.5 - A pistoncylinder device initially contains 0.4 kg...Ch. 4.5 - 4–19E Hydrogen is contained in a piston–cylinder...Ch. 4.5 - A pistoncylinder device contains 0.15 kg of air...Ch. 4.5 - 1 kg of water that is initially at 90C with a...Ch. 4.5 - Prob. 22PCh. 4.5 - An ideal gas undergoes two processes in a...Ch. 4.5 - A pistoncylinder device contains 50 kg of water at...Ch. 4.5 - Prob. 26PCh. 4.5 - 4–27E A closed system undergoes a process in which...Ch. 4.5 - A rigid container equipped with a stirring device...Ch. 4.5 - A 0.5-m3rigid tank contains refrigerant-134a...Ch. 4.5 - A 20-ft3 rigid tank initially contains saturated...Ch. 4.5 - Prob. 31PCh. 4.5 - Prob. 32PCh. 4.5 - Prob. 33PCh. 4.5 - An insulated pistoncylinder device contains 5 L of...Ch. 4.5 -
4–35 A piston–cylinder device initially...Ch. 4.5 - Prob. 37PCh. 4.5 - A 40-L electrical radiator containing heating oil...Ch. 4.5 - Steam at 75 kPa and 8 percent quality is contained...Ch. 4.5 - Prob. 40PCh. 4.5 - An insulated tank is divided into two parts by a...Ch. 4.5 - Is the relation u = mcv,avgT restricted to...Ch. 4.5 - Is the relation h = mcp,avgT restricted to...Ch. 4.5 - Is the energy required to heat air from 295 to 305...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - Prob. 49PCh. 4.5 - What is the change in the enthalpy, in kJ/kg, of...Ch. 4.5 - Prob. 51PCh. 4.5 - Prob. 52PCh. 4.5 - Prob. 53PCh. 4.5 - Determine the internal energy change u of...Ch. 4.5 - Prob. 55PCh. 4.5 - Prob. 56PCh. 4.5 - Is it possible to compress an ideal gas...Ch. 4.5 - A 3-m3 rigid tank contains hydrogen at 250 kPa and...Ch. 4.5 - A 10-ft3 tank contains oxygen initially at 14.7...Ch. 4.5 - 4–60E A rigid tank contains 10 Ibm of air at 30...Ch. 4.5 - 4–61E Nitrogen gas to 20 psia and 100°F initially...Ch. 4.5 - An insulated rigid tank is divided into two equal...Ch. 4.5 - 4–63 A 4-m × 5-m × 6-m room is to be heated by a...Ch. 4.5 - 4-64 A student living in a 3-m × 4-m × 4-m...Ch. 4.5 - A 4-m 5-m 7-m room is heated by the radiator of...Ch. 4.5 - 4–66 Argon is compressed in a polytropic process...Ch. 4.5 - An insulated pistoncylinder device contains 100 L...Ch. 4.5 - 4–68 A spring-loaded piston-cylinder device...Ch. 4.5 - An ideal gas contained in a pistoncylinder device...Ch. 4.5 - Air is contained in a variable-load pistoncylinder...Ch. 4.5 - Prob. 71PCh. 4.5 - Prob. 72PCh. 4.5 - Prob. 74PCh. 4.5 - Prob. 75PCh. 4.5 - Prob. 76PCh. 4.5 - 4–77 Air is contained in a piston-cylinder device...Ch. 4.5 - A pistoncylinder device contains 4 kg of argon at...Ch. 4.5 - The state of liquid water is changed from 50 psia...Ch. 4.5 - During a picnic on a hot summer day, all the cold...Ch. 4.5 - Consider a 1000-W iron whose base plate is made of...Ch. 4.5 - Stainless steel ball bearings ( = 8085 kg/m3 and...Ch. 4.5 - In a production facility, 1.6-in-thick 2-ft 2-ft...Ch. 4.5 - Prob. 84PCh. 4.5 - An electronic device dissipating 25 W has a mass...Ch. 4.5 - Prob. 87PCh. 4.5 - 4–88 In a manufacturing facility, 5-cm-diameter...Ch. 4.5 - Prob. 89PCh. 4.5 - Is the metabolizable energy content of a food the...Ch. 4.5 - Is the number of prospective occupants an...Ch. 4.5 - Prob. 92PCh. 4.5 - Prob. 93PCh. 4.5 - Consider two identical 80-kg men who are eating...Ch. 4.5 - A 68-kg woman is planning to bicycle for an hour....Ch. 4.5 - A 90-kg man gives in to temptation and eats an...Ch. 4.5 - A 60-kg man used to have an apple every day after...Ch. 4.5 - Consider a man who has 20 kg of body fat when he...Ch. 4.5 - Consider two identical 50-kg women, Candy and...Ch. 4.5 - Prob. 100PCh. 4.5 - Prob. 101PCh. 4.5 - Prob. 102PCh. 4.5 - Prob. 103PCh. 4.5 - Prob. 104PCh. 4.5 - Prob. 105PCh. 4.5 - Prob. 106PCh. 4.5 - Prob. 107RPCh. 4.5 - Consider a pistoncylinder device that contains 0.5...Ch. 4.5 - Air in the amount of 2 lbm is contained in a...Ch. 4.5 - Air is expanded in a polytropic process with n =...Ch. 4.5 - Nitrogen at 100 kPa and 25C in a rigid vessel is...Ch. 4.5 - Prob. 112RPCh. 4.5 - Prob. 113RPCh. 4.5 - Prob. 114RPCh. 4.5 - 4–115 A mass of 12 kg of saturated...Ch. 4.5 - Prob. 116RPCh. 4.5 - Prob. 117RPCh. 4.5 - Prob. 118RPCh. 4.5 - Prob. 119RPCh. 4.5 - Prob. 120RPCh. 4.5 - Prob. 121RPCh. 4.5 - Prob. 122RPCh. 4.5 - Prob. 123RPCh. 4.5 - Prob. 124RPCh. 4.5 - Prob. 125RPCh. 4.5 - Prob. 126RPCh. 4.5 - Prob. 127RPCh. 4.5 - Prob. 128RPCh. 4.5 - A well-insulated 3-m 4m 6-m room initially at 7C...Ch. 4.5 - Prob. 131RPCh. 4.5 - Prob. 133RPCh. 4.5 - Prob. 134RPCh. 4.5 - An insulated pistoncylinder device initially...Ch. 4.5 - Prob. 137RPCh. 4.5 - Prob. 138RPCh. 4.5 - A pistoncylinder device initially contains 0.35 kg...Ch. 4.5 - Prob. 140RPCh. 4.5 - 4–141 One kilogram of carbon dioxide is compressed...Ch. 4.5 - Prob. 142RPCh. 4.5 - Prob. 143RPCh. 4.5 - Prob. 144FEPCh. 4.5 - A 3-m3 rigid tank contains nitrogen gas at 500 kPa...Ch. 4.5 - Prob. 146FEPCh. 4.5 - A well-sealed room contains 60 kg of air at 200...Ch. 4.5 - Prob. 148FEPCh. 4.5 - A room contains 75 kg of air at 100 kPa and 15C....Ch. 4.5 - A pistoncylinder device contains 5 kg of air at...Ch. 4.5 - Prob. 151FEPCh. 4.5 - Prob. 152FEPCh. 4.5 - A 2-kW electric resistance heater submerged in 5...Ch. 4.5 - 1.5 kg of liquid water initially at 12C is to be...Ch. 4.5 - An ordinary egg with a mass of 0.1 kg and a...Ch. 4.5 - 4–156 An apple with an average mass of 0.18 kg and...Ch. 4.5 - A 6-pack of canned drinks is to be cooled from 18C...Ch. 4.5 - An ideal gas has a gas constant R = 0.3 kJ/kgK and...Ch. 4.5 - Prob. 159FEPCh. 4.5 - Prob. 161FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A frictionless piston-cylinder device initially contains 200L of saturated liquid refrigerant-134a. The piston is free to move and its mass is such that it maintains a pressure of 900 kPa on the refrigerant. The refrigerant is now heated until its temperature rises to 70C. Calculate the work done during this process. ANS. 5571 KJA fixed mass of an ideal gas is heated from 50 to 80°C at a constant pressure of (a) 1 atm and (b) 3 atm. For which case do you think the energy required will be greater?arrow_forwardHi can you please help with this thermodynamics question? Please be very clear with the formulas used since I am new at this section.arrow_forwardPlease explain the answer step by step thank youarrow_forward
- Steam is contained in a 4-L volume at a pressure of 1.5 MPa and a temperature of 400 C. If the pressure is held constant by expanding the volume while 20 kJ of heat is added, the final temperature is nearestarrow_forward25.995 kg per second of water at 0.03398675 kbarg and internal energy of 15000 kW is heated at constant pressure to saturated vapor and further heated at constant volume process until the pressure is quadrupled. Determine the ratio of the heat added during the constant volume process to the heat added during the constant pressure process.arrow_forwardIm Having issues trying to solve this exercise of Thermodynamics. it already gives me the answer but im not sure how to get to that answer.arrow_forward
- The piston cylinder system shown below contains R-410a at 20°C and 100 kPa. If the temperature of the R-410a is increased to 50°C in a constant pressure process, what is the specific volume of the R-410a in the cylinder at the final state?arrow_forwardA weighted piston-cylinder device is initially filled with water as a saturated vapor at 500 kPa. The device is then heated isobarically until the temperature is 360 °C. Determine the heat transfer per unit mass, in kJ/kg. Sketch the process on a T-V diagram and submit with your work.arrow_forwardA piston-cylinder arrangement contains 2kg of steam origionally at 200C and 90% quality. Calculate the heat that must be transferred to triple the volume at constant pressure.arrow_forward
- Niloarrow_forwardTHERMODYNAMICS A spring-loaded piston cylinder device contains 2-ft3 of air. The spring constant is 10 lbf/in and its piston diameter is 15 inches. The state of the air is 260 psia at 565 degrees Fahrenheit when no force is exerted by the spring on the piston. This device is now cooled until the volume is half its original size. What is the change in the specific internal energy and enthalpy of the air?arrow_forwardi need the answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license