Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4.5, Problem 128RP

(a)

To determine

The amount of ice that needs to be added into water at 0 C of temperature.

(a)

Expert Solution
Check Mark

Answer to Problem 128RP

The amount of ice that needs to be added into water at 0 C of temperature is 54.6g_.

Explanation of Solution

Write the expression for the mass of the water.

mw=ρV (I)

Here, the density of the water is ρ and the volume of the water is V.

Write the expression for the energy balance equation.

EinEout=ΔEsystem (II)

Here, the total energy entering the system is Ein, the total energy leaving the system is Eout, and the change in the total energy of the system is ΔEsystem.

Simplify Equation (II) and write energy balance relation of cold water

QinWout=ΔU (III)

Here, the heat to be transfer into the system is Qin, the work to be done by the system is Wout, and the change in the internal energy is ΔU.

Conclusion:

Substitute 0 for Qin and 0 for Wout in Equation (III).

0=ΔU0=ΔUice+ΔUwater0=[mc(0°CT1)solid+mhif+mc(T20°C)liquid]ice+[mc(T2T1)]water (IV)

Here, the mass of the ice is m, the heat of fusion of ice is hif, the specific heat of ice at liquid state is c, the initial temperature of ice is T1, and the final temperature of ice is T2

From the Table A-3 “Properties of common liquids, solids and foods”, obtain the value of specific heat of ice at 0 C and room temperature as 2.11kJ/kg°C and 4.18kJ/kg°C.

Substitute 1kg/L for ρ and 0.3L for V in Equation (I).

mw=(1kg/L)(0.3L)=0.3kg

For initial temperature of ice as 0 C.

Substitute 0°C for T1,solid, 2.11kJ/kg°C for csolid, 333.7kJ/kg for hif, 4.18kJ/kg°C for cliquid, 5°C for T2,liquid, 0.3kg for mwater, and 20°C for T1,water in Equation (IV).

[[m(2.11kJ/kg°C)(0°C0°C)solid+m(333.7kJ/kg)+m(4.18kJ/kg°C)((5°C)0°C)liquid]ice+[(0.3kJ/kg)(4.18kJ/kg°C)(5°C20°C)]water]=0m[0+(333.7kJ/kg)+(4.18kJ/kg°C)(5°C)]ice+[(0.3kJ/kg)(4.18kJ/kg°C)(15°C)]water=0m=0.0546kg×(1000g1kg)m=54.6g

Thus, the amount of ice that needs to be added into water at 0 C of temperature is 54.6g_.

(b)

To determine

The amount of ice that needs to be added into water at -20 C of temperature.

The amount of water that needs to cool down the cold water at 0 C of temperature.

(b)

Expert Solution
Check Mark

Answer to Problem 128RP

The amount of ice that needs to be added into water at -20 C of temperature is 48.7g_.

The amount of water that needs to cool down the cold water at 0 C of temperature is 900g_.

Explanation of Solution

Substitute 0 for Qin and 0 for Wout in Equation (III) and write energy balance relation for cooling down the cold water.

0=ΔU0=ΔUcoldwater+ΔUwater0=[mc(T2T1)]coldwater+[mc(T2T1)]water (V)

Here, the mass of cold water is mcoldwater, the specific heat of cold water is ccoldwater, the initial temperature of cold water is T1,coldwater, the final temperature of cold water is T2,coldwater, the mass of water is mwater, the specific heat of water is cwater, the initial temperature of water is T1,water, and the final temperature of water is T2,water.

Conclusion:

For initial temperature of ice as -20 C instead of 0 C.

Substitute 20°C for T1,solid, 2.11kJ/kg°C for csolid, 333.7kJ/kg for hif, 4.18kJ/kg°C for cliquid, 5°C for T2,liquid, 0.3kg for mwater, and 20°C for T1,water in Equation (IV).

[[m(2.11kJ/kg°C)(0°C(20°C))solid+m(333.7kJ/kg)+m(4.18kJ/kg°C)((5°C)0°C)liquid]ice+[(0.3kJ/kg)(4.18kJ/kg°C)(5°C20°C)]water]=0[m[(2.11kJ/kg°C)(20°C)+(333.7kJ/kg)+(4.18kJ/kg°C)(5°C)]ice+[(0.3kJ/kg)(4.18kJ/kg°C)(15°C)]water]=0m=0.0487kg×(1000g1kg)m=48.7g

Thus, the amount of ice that needs to be added into water at -20 C of temperature is 48.7g_.

Substitute 4.18kJ/kg°C for c, 5°C for T2,coldwater, 0°C for T1,coldwater, 0.3kg for mwater, 5°C for T2,water, and 20°C for T1,water in Equation (V).

[mcoldwater(4.18kJ/kg°C)(50)°C]+(0.3kg)(4.18kJ/kg°C)(520)°C=0[mcoldwater(4.18kJ/kg°C)(5°C)]+(0.3kg)(4.18kJ/kg°C)(15°C)=0m=0.9kg×(1000g1kg)m=900g

Thus, the amount of water that needs to cool down the cold water at 0 C of temperature is 900g_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.
please help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoa
Solve this problem and show all of the work

Chapter 4 Solutions

Thermodynamics: An Engineering Approach

Ch. 4.5 - A mass of 1.5 kg of air at 120 kPa and 24C is...Ch. 4.5 - During some actual expansion and compression...Ch. 4.5 - 4–14 A frictionless piston–cylinder device...Ch. 4.5 - Prob. 15PCh. 4.5 - During an expansion process, the pressure of a gas...Ch. 4.5 - A pistoncylinder device initially contains 0.4 kg...Ch. 4.5 - 4–19E Hydrogen is contained in a piston–cylinder...Ch. 4.5 - A pistoncylinder device contains 0.15 kg of air...Ch. 4.5 - 1 kg of water that is initially at 90C with a...Ch. 4.5 - Prob. 22PCh. 4.5 - An ideal gas undergoes two processes in a...Ch. 4.5 - A pistoncylinder device contains 50 kg of water at...Ch. 4.5 - Prob. 26PCh. 4.5 - 4–27E A closed system undergoes a process in which...Ch. 4.5 - A rigid container equipped with a stirring device...Ch. 4.5 - A 0.5-m3rigid tank contains refrigerant-134a...Ch. 4.5 - A 20-ft3 rigid tank initially contains saturated...Ch. 4.5 - Prob. 31PCh. 4.5 - Prob. 32PCh. 4.5 - Prob. 33PCh. 4.5 - An insulated pistoncylinder device contains 5 L of...Ch. 4.5 - 4–35 A piston–cylinder device initially...Ch. 4.5 - Prob. 37PCh. 4.5 - A 40-L electrical radiator containing heating oil...Ch. 4.5 - Steam at 75 kPa and 8 percent quality is contained...Ch. 4.5 - Prob. 40PCh. 4.5 - An insulated tank is divided into two parts by a...Ch. 4.5 - Is the relation u = mcv,avgT restricted to...Ch. 4.5 - Is the relation h = mcp,avgT restricted to...Ch. 4.5 - Is the energy required to heat air from 295 to 305...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - Prob. 49PCh. 4.5 - What is the change in the enthalpy, in kJ/kg, of...Ch. 4.5 - Prob. 51PCh. 4.5 - Prob. 52PCh. 4.5 - Prob. 53PCh. 4.5 - Determine the internal energy change u of...Ch. 4.5 - Prob. 55PCh. 4.5 - Prob. 56PCh. 4.5 - Is it possible to compress an ideal gas...Ch. 4.5 - A 3-m3 rigid tank contains hydrogen at 250 kPa and...Ch. 4.5 - A 10-ft3 tank contains oxygen initially at 14.7...Ch. 4.5 - 4–60E A rigid tank contains 10 Ibm of air at 30...Ch. 4.5 - 4–61E Nitrogen gas to 20 psia and 100°F initially...Ch. 4.5 - An insulated rigid tank is divided into two equal...Ch. 4.5 - 4–63 A 4-m × 5-m × 6-m room is to be heated by a...Ch. 4.5 - 4-64 A student living in a 3-m × 4-m × 4-m...Ch. 4.5 - A 4-m 5-m 7-m room is heated by the radiator of...Ch. 4.5 - 4–66 Argon is compressed in a polytropic process...Ch. 4.5 - An insulated pistoncylinder device contains 100 L...Ch. 4.5 - 4–68 A spring-loaded piston-cylinder device...Ch. 4.5 - An ideal gas contained in a pistoncylinder device...Ch. 4.5 - Air is contained in a variable-load pistoncylinder...Ch. 4.5 - Prob. 71PCh. 4.5 - Prob. 72PCh. 4.5 - Prob. 74PCh. 4.5 - Prob. 75PCh. 4.5 - Prob. 76PCh. 4.5 - 4–77 Air is contained in a piston-cylinder device...Ch. 4.5 - A pistoncylinder device contains 4 kg of argon at...Ch. 4.5 - The state of liquid water is changed from 50 psia...Ch. 4.5 - During a picnic on a hot summer day, all the cold...Ch. 4.5 - Consider a 1000-W iron whose base plate is made of...Ch. 4.5 - Stainless steel ball bearings ( = 8085 kg/m3 and...Ch. 4.5 - In a production facility, 1.6-in-thick 2-ft 2-ft...Ch. 4.5 - Prob. 84PCh. 4.5 - An electronic device dissipating 25 W has a mass...Ch. 4.5 - Prob. 87PCh. 4.5 - 4–88 In a manufacturing facility, 5-cm-diameter...Ch. 4.5 - Prob. 89PCh. 4.5 - Is the metabolizable energy content of a food the...Ch. 4.5 - Is the number of prospective occupants an...Ch. 4.5 - Prob. 92PCh. 4.5 - Prob. 93PCh. 4.5 - Consider two identical 80-kg men who are eating...Ch. 4.5 - A 68-kg woman is planning to bicycle for an hour....Ch. 4.5 - A 90-kg man gives in to temptation and eats an...Ch. 4.5 - A 60-kg man used to have an apple every day after...Ch. 4.5 - Consider a man who has 20 kg of body fat when he...Ch. 4.5 - Consider two identical 50-kg women, Candy and...Ch. 4.5 - Prob. 100PCh. 4.5 - Prob. 101PCh. 4.5 - Prob. 102PCh. 4.5 - Prob. 103PCh. 4.5 - Prob. 104PCh. 4.5 - Prob. 105PCh. 4.5 - Prob. 106PCh. 4.5 - Prob. 107RPCh. 4.5 - Consider a pistoncylinder device that contains 0.5...Ch. 4.5 - Air in the amount of 2 lbm is contained in a...Ch. 4.5 - Air is expanded in a polytropic process with n =...Ch. 4.5 - Nitrogen at 100 kPa and 25C in a rigid vessel is...Ch. 4.5 - Prob. 112RPCh. 4.5 - Prob. 113RPCh. 4.5 - Prob. 114RPCh. 4.5 - 4–115 A mass of 12 kg of saturated...Ch. 4.5 - Prob. 116RPCh. 4.5 - Prob. 117RPCh. 4.5 - Prob. 118RPCh. 4.5 - Prob. 119RPCh. 4.5 - Prob. 120RPCh. 4.5 - Prob. 121RPCh. 4.5 - Prob. 122RPCh. 4.5 - Prob. 123RPCh. 4.5 - Prob. 124RPCh. 4.5 - Prob. 125RPCh. 4.5 - Prob. 126RPCh. 4.5 - Prob. 127RPCh. 4.5 - Prob. 128RPCh. 4.5 - A well-insulated 3-m 4m 6-m room initially at 7C...Ch. 4.5 - Prob. 131RPCh. 4.5 - Prob. 133RPCh. 4.5 - Prob. 134RPCh. 4.5 - An insulated pistoncylinder device initially...Ch. 4.5 - Prob. 137RPCh. 4.5 - Prob. 138RPCh. 4.5 - A pistoncylinder device initially contains 0.35 kg...Ch. 4.5 - Prob. 140RPCh. 4.5 - 4–141 One kilogram of carbon dioxide is compressed...Ch. 4.5 - Prob. 142RPCh. 4.5 - Prob. 143RPCh. 4.5 - Prob. 144FEPCh. 4.5 - A 3-m3 rigid tank contains nitrogen gas at 500 kPa...Ch. 4.5 - Prob. 146FEPCh. 4.5 - A well-sealed room contains 60 kg of air at 200...Ch. 4.5 - Prob. 148FEPCh. 4.5 - A room contains 75 kg of air at 100 kPa and 15C....Ch. 4.5 - A pistoncylinder device contains 5 kg of air at...Ch. 4.5 - Prob. 151FEPCh. 4.5 - Prob. 152FEPCh. 4.5 - A 2-kW electric resistance heater submerged in 5...Ch. 4.5 - 1.5 kg of liquid water initially at 12C is to be...Ch. 4.5 - An ordinary egg with a mass of 0.1 kg and a...Ch. 4.5 - 4–156 An apple with an average mass of 0.18 kg and...Ch. 4.5 - A 6-pack of canned drinks is to be cooled from 18C...Ch. 4.5 - An ideal gas has a gas constant R = 0.3 kJ/kgK and...Ch. 4.5 - Prob. 159FEPCh. 4.5 - Prob. 161FEP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer [Conduction, Convection, and Radiation]; Author: Mike Sammartano;https://www.youtube.com/watch?v=kNZi12OV9Xc;License: Standard youtube license