Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 4P
(a)
To determine
Prove that
(b)
To determine
The relation between the range and the mass.
(c)
To determine
The range of the force that might be produced by the virtual exchange of proton.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Prove that the exchange of a virtual particle of mass m can be associated with a force with a range given by d ≈ 1240/4πmc2 = 98.7/mc2where d is in nanometers and mc2 is in electron volts. (b) State the pattern of dependence of the range on the mass. (c) What is the range of the force that might be produced by the virtual exchange of a proton?
Provide the answers in 90 minutes, and count as 2 questions if needed.
The degeneracy pressure of the electrons can stabilize the collapse of a star due to gravity by equating the gravitational inward pressure with the outward electron gas degeneracy pressure. These cold stars called white dwarfs have small radii compared to their original size and this radius decreases as the original mass of the star increases. As the mass of a star increases, the electron energy increases to a point in which their energy has to be treated relativistically.
(a) Evaluate the degeneracy pressure for ultra-relativistic electrons (problem 2, above).
(b) As the pressure increases, the reaction e − + p → n + ν takes place. The neutrinos (ν) escape as matter is transparent to them, electrons and protons convert to neutrons until we are left with a neutron star. Using your expression for the degeneracy pressure obtained in (a) above, equate the gravitational pressureto the neutron degeneracy pressure (replace the electron’s mass in your degeneracy pressure expression from (a)…
Chapter 44 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 44.2 - Prob. 44.1QQCh. 44.5 - Prob. 44.3QQCh. 44.5 - Prob. 44.4QQCh. 44.8 - Prob. 44.5QQCh. 44.8 - Prob. 44.6QQCh. 44 - Prob. 1PCh. 44 - Prob. 2PCh. 44 - Prob. 3PCh. 44 - Prob. 4PCh. 44 - Prob. 5P
Ch. 44 - Prob. 6PCh. 44 - Prob. 7PCh. 44 - Prob. 8PCh. 44 - Prob. 9PCh. 44 - Prob. 10PCh. 44 - Prob. 11PCh. 44 - Prob. 12PCh. 44 - Prob. 13PCh. 44 - Prob. 14PCh. 44 - Prob. 15PCh. 44 - Prob. 16PCh. 44 - Prob. 17PCh. 44 - Prob. 18PCh. 44 - Prob. 20PCh. 44 - Prob. 21PCh. 44 - Prob. 22PCh. 44 - Prob. 23PCh. 44 - Prob. 24PCh. 44 - Prob. 25PCh. 44 - Prob. 26PCh. 44 - Prob. 27PCh. 44 - Prob. 29PCh. 44 - Prob. 30PCh. 44 - The various spectral lines observed in the light...Ch. 44 - Prob. 33PCh. 44 - Prob. 34APCh. 44 - Prob. 35APCh. 44 - Prob. 36APCh. 44 - Prob. 37APCh. 44 - Prob. 38APCh. 44 - Prob. 39APCh. 44 - Prob. 40APCh. 44 - An unstable particle, initially at rest, decays...Ch. 44 - Prob. 42APCh. 44 - Prob. 43APCh. 44 - Prob. 44APCh. 44 - Prob. 45APCh. 44 - Prob. 46CPCh. 44 - Prob. 47CPCh. 44 - Prob. 48CPCh. 44 - Prob. 49CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider an ultrahigh-energy cosmic ray entering the Earth’s atmosphere (some have energies approaching a joule).Construct a problem in which you calculate the energy of the particle based on the number of particles in an observed cosmic ray shower. Among the things to consider are the average mass of the shower particles, the average number per square meter, and the extent (number of square meters covered) of the shower. Express the energy in eV and joules.arrow_forwardThe range of the nuclear strong force is believed to be about 1.2 x 10-15 m. An early theory of nuclear physics proposed that the particle that “mediates” the strong force (similar to the photon mediating the electromagnetic force) is the pion. Assume that the pion moves at the speed of light in the nucleus, and calculate the time ∆t it takes to travel between nucleons. Assume that the distance between nucleons is also about 1.2 x 10-15 m. Use this time ∆t to calculate the energy ∆E for which energy conservation is violated during the time ∆t. This ∆E has been used to estimate the mass of the pion. What value do you determine for the mass? Compare this value with the measured value of 135 MeV/c2 for the neutral pion.arrow_forwardPlease answerarrow_forward
- Protons of energy 5.7 MeV are incident on a gold foil of thickness 4.4 x 10-6 m. What fraction of the incident protons is scattered at the following angles? (The density of gold is 19.3 g/cm³, and its molar mass is 197.0 g/mol. Give your answer in decimal notation, e.g., 0.05 for 1/20.) (a) greater than 90° (b) less than 5⁰arrow_forwardGiven the following massspectrometer schematic, find theB-field such that the radius of theparticle’s trajectory is 0.194 m. Assume the particle is an electronwith mass 2.36 x 10-26 kg, and beginsits trajectory in an E-field of 2.1 x103 V/m.arrow_forwardConsider an electron orbiting around a proton with an orbital radius of R = 4.77 - 10 orbital frequency of the electron motion? Use m. = 9.1ll x 10 31 kg, e = 1.6 x 10 k = 9 x 10° Nm2/c?. 10 m. What is the 19 C, and The frequency, f, = 0.24E15 v Units Hz By how much would this frequency increase (assume the same orbital radius) if an external magnetic field of B = 0.5 T is applied to the system along the the electron axis of rotation? The increase in the frequency , Af = 1.E12 X Units Hzarrow_forward
- (a) Show that the kinetic energy of a nonrelativistic particle can be written in terms of its momentum as KE =p2/2m. (b) Use the results of part (a) to find the minimum kinetic energy of a proton confined within a nucleus having a diameter of 1.0 × 10−15m.arrow_forwardAn accelerator collides protons with an energy of 920 GeV with electrons with an energy of 27.5 GeV. The direction of the proton movement is called forwards and the direction of the electron backwards. a) A collaboration of scientists suggests an experiment with a multi-purpose detector around the interaction point. This is their proposal: The center-of-mass energy of E(cms) = 280 GeV allows for a wide range of physics. The experiment will be built asymmetrically around the interaction point with more instrumenta- tion in the backwards direction, where most of the particles will be created. The innermost layer will consist of a semiconductor tracking detector, followed by a muon detector in radial direction. The next layer will be a calorimeter consisting of alternate layers of aluminium and scintillating fibres. The outermost layer will consist of a tracking detector. A supercon- ducting magnet will create a homogenuos field to bend the charged particles' trajectories. As the…arrow_forwardA mass m moves in a circular orbit around the source of an attractive central force with potential energy U=krn, where r is radius of the orbit. The virial theoremstates that then 2T=nU. a)Prove the virial theorem.b)Verify that the theorem holds for electrostatic force.c)Verify that the theorem holds for gravitational force.arrow_forward
- Protons of energy 5.1 MeV are incident on a silver foil of thickness 3.6 x 10-6 m. What fraction of the incident protons is scattered at the following angles? (The density of silver is 10.5 g/cm³, and its molar mass is 107.9 g/mol. Give your answer in decimal notation, e.g., 0.05 for 1/20.) (a) greater than 90° 3.716E-5 X (b) less than 5⁰arrow_forwardPlease answer within 90 minutes.arrow_forward/arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning