
Concept explainers
(a)
The conserved quantities in the reaction.
(a)

Answer to Problem 18P
The conserved quantities in the reaction are baryon number, charge, electron lepton number and tau lepton number.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are baryon number, charge, electron lepton number and tau lepton number.
(b)
The conserved quantities in the reaction.
(b)

Answer to Problem 18P
The conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number and tau lepton number.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number and tau lepton number.
(c)
The conserved quantities in the reaction.
(c)

Answer to Problem 18P
The conserved quantities in the reaction are charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
(d)
The conserved quantities in the reaction.
(d)

Answer to Problem 18P
The conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
(e)
The conserved quantities in the reaction.
(e)

Answer to Problem 18P
The conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
(f)
The conserved quantities in the reaction.
(f)

Answer to Problem 18P
The conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
(g)
The reactions that cannot occur.
(g)

Answer to Problem 18P
The reactions that cannot occur are (a), (b) and (c).
Explanation of Solution
Write the reaction (a).
Reaction (a) cannot occur because muon lepton number and strangeness are not conserved.
Write the reaction (b).
Reaction (b) cannot occur because strangeness is not conserved.
Write the reaction (c).
Reaction (c) cannot occur because baryon number is not conserved.
Conclusion:
Thus, the reactions that cannot occur are (a), (b) and (c).
Want to see more full solutions like this?
Chapter 44 Solutions
Physics for Scientists and Engineers with Modern Physics
- Show work using graphing paperarrow_forwardCan someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forward
- In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forward
- Please see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forward
- Sketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardThe drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





