Concept explainers
(a)
The conserved quantities in the reaction.
(a)
Answer to Problem 18P
The conserved quantities in the reaction are baryon number, charge, electron lepton number and tau lepton number.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are baryon number, charge, electron lepton number and tau lepton number.
(b)
The conserved quantities in the reaction.
(b)
Answer to Problem 18P
The conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number and tau lepton number.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number and tau lepton number.
(c)
The conserved quantities in the reaction.
(c)
Answer to Problem 18P
The conserved quantities in the reaction are charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
(d)
The conserved quantities in the reaction.
(d)
Answer to Problem 18P
The conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
(e)
The conserved quantities in the reaction.
(e)
Answer to Problem 18P
The conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
(f)
The conserved quantities in the reaction.
(f)
Answer to Problem 18P
The conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
Explanation of Solution
Write the reaction.
Check the conservation of baryon number for the reaction on both sides.
Check the conservation of charge for the reaction on both sides.
Check the conservation of electron lepton number for the reaction on both sides.
Check the conservation of muon lepton number for the reaction on both sides.
Check the conservation of tau lepton number for the reaction on both sides.
Check the conservation of strangeness for the reaction on both sides.
Conclusion:
Thus, the conserved quantities in the reaction are baryon number, charge, electron lepton number, muon lepton number, tau lepton number and strangeness.
(g)
The reactions that cannot occur.
(g)
Answer to Problem 18P
The reactions that cannot occur are (a), (b) and (c).
Explanation of Solution
Write the reaction (a).
Reaction (a) cannot occur because muon lepton number and strangeness are not conserved.
Write the reaction (b).
Reaction (b) cannot occur because strangeness is not conserved.
Write the reaction (c).
Reaction (c) cannot occur because baryon number is not conserved.
Conclusion:
Thus, the reactions that cannot occur are (a), (b) and (c).
Want to see more full solutions like this?
Chapter 44 Solutions
Physics for Scientists and Engineers with Modern Physics
- Math 57arrow_forwardPoint charges q1 = 50 µC and q2 = −25 µC are placed 1.0 m apart. What is the magnitude of the force on a third charge q3 = 40 µC placed midway between q1 and q2? (The prefix µ =10−6 C.)arrow_forwardThe de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processesarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning