Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 44, Problem 46CP

(a)

To determine

Show that the threshold kinetic energy is Kmin=[m32(m1+m2)2]c22m2.

(a)

Expert Solution
Check Mark

Answer to Problem 46CP

The threshold kinetic energy is Kmin=[m32(m1+m2)2]c22m2.

Explanation of Solution

Write the equation showing the conservation of energy.

    Emin+m2c2=(m3c2)2+(p3c)2                                                                         (I)

Here, Emin is the minimum energy required for the bombarding particle to induce the reaction, m2 is the mass of the stationary particle, m3 is the mass of the product, p3 is the momentum of the product and c is the speed of light.

Write the relativistic energy equation and substitute p1 for p3 and m1 for in equation (I) because p1=p3 due to conservation of momentum.

    (p3c)2=(p1c)2=Emin2(m1c2)                                                                                    (II)

Substitute equation (II) in (I).

    Emin+m2c2=(m3c2)2+Emin2(m1c2)

Conclusion:

Take square on both sides.

    Emin2+2Eminm2c2+(m2c2)2=(m3c2)2+Emin2(m1c2)Emin=(m32m12m22)c22m2                                   (III)

Write the equation for minimum kinetic energy.

    Kmin=Eminm1c2

Substitute equation (III) in above equation to find Kmin.

    Kmin=(m32m12m22)c22m2m1c2=(m32m12m22)c22m1m2c22m2=(m32m12m222m1m2)c22m2=[m32(m1+m2)2]c22m2

Thus, the threshold kinetic energy is Kmin=[m32(m1+m2)2]c22m2.

(b)

To determine

The threshold energy for the reaction p+p=p+p+p+p¯.

(b)

Expert Solution
Check Mark

Answer to Problem 46CP

The threshold energy for the reaction p+p=p+p+p+p¯ is 5.63GeV.

Explanation of Solution

Write the equation for the threshold energy.

    Kmin=[m32(m1+m2)2]c22m2

Substitute mp+mp+mp+mp¯ for m3, mp for m1 and mp for m2 in the above equation.

    Kmin=[(mp+mp+mp+mp¯)2(mp+mp)2]c22mp

Conclusion:

Substitute 938.3MeV/c2 for mp and 938.3MeV/c2 for mp¯ to find Kmin.

    Kmin=[(938.3MeV/c2+938.3MeV/c2+938.3MeV/c2+938.3MeV/c2)2(938.3MeV/c2+938.3MeV/c2)2]c22(938.3MeV/c2)=[4(938.3MeV/c2)22(938.3MeV/c2)2]c22(938.3MeV/c2)=(5630MeV)(103GeV1MeV)=5.63GeV

Thus, the threshold energy for the reaction p+p=p+p+p+p¯ is 5.63GeV.

(c)

To determine

The threshold energy for the reaction π+p=K0+Λ0.

(c)

Expert Solution
Check Mark

Answer to Problem 46CP

The threshold energy for the reaction π+p=K0+Λ0 is 768MeV.

Explanation of Solution

Write the equation for the threshold energy.

    Kmin=[m32(m1+m2)2]c22m2

Substitute mK0+mΛ0 for m3, mπ for m1 and mp for m2 in the above equation.

    Kmin=[(mK0+mΛ0)2(mπ+mp)2]c22mp

Conclusion:

Substitute 497.7MeV/c2 for mK0, 1115.6MeV/c2 for mΛ0, 139.6MeV/c2 for mπ and 938.3MeV/c2 for mp¯ to find Kmin.

    Kmin=[(497.7MeV/c2+1115.6MeV/c2)2(139.6MeV/c2+938.3MeV/c2)2]c22(938.3MeV/c2)=768MeV

Thus, the threshold energy for the reaction π+p=K0+Λ0 is 768MeV.

(d)

To determine

The threshold energy for the reaction p+p=p+p+π0.

(d)

Expert Solution
Check Mark

Answer to Problem 46CP

The threshold energy for the reaction p+p=p+p+π0 is 280MeV.

Explanation of Solution

Write the equation for the threshold energy.

    Kmin=[m32(m1+m2)2]c22m2

Substitute mp+mp+mπ0 for m3, mp for m1 and mp for m2 in the above equation.

    Kmin=[(mp+mp+mπ0)2(mp+mp)2]c22mp

Conclusion:

Substitute 135MeV/c2 for mπ0 and 938.3MeV/c2 for mp¯ to find Kmin.

    Kmin=[(938.3MeV/c2+938.3MeV/c2+135MeV/c2)2(938.3MeV/c2+938.3MeV/c2)2]c22(938.3MeV/c2)=[(2(938.3MeV/c2)+135MeV/c2)22(938.3MeV/c2)2]c22(938.3MeV/c2)=280MeV

Thus, the threshold energy for the reaction p+p=p+p+π0 is 280MeV.

(e)

To determine

The threshold energy for the reaction p+p¯=Z0.

(e)

Expert Solution
Check Mark

Answer to Problem 46CP

The threshold energy for the reaction p+p¯=Z0 is 4.43TeV.

Explanation of Solution

Write the equation for the threshold energy.

    Kmin=[m32(m1+m2)2]c22m2

Substitute mZ0 for m3, mp for m1 and mp¯ for m2 in the above equation.

    Kmin=[(mZ0)2(mp+mp¯)2]c22mp¯

Conclusion:

Substitute 91.2×103MeV/c2 for mZ0 and 938.3MeV/c2 for mp¯ and mp¯ to find Kmin.

    Kmin=[(91.2×103MeV/c2)2(938.3MeV/c2+938.3MeV/c2)2]c22(938.3MeV/c2)=[(91.2×103MeV/c2)22(938.3MeV/c2)2]c22(938.3MeV/c2)=(4.43×106MeV)(106TeV1MeV)=4.43TeV

Thus, the threshold energy for the reaction p+p¯=Z0 is 4.43TeV.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In a scene from The Avengers (the first one) Black Widow is boosted directly upwards by Captain America, where she then grabs on to a Chitauri speeder that is 15.0 feet above her and hangs on. She is in the air for 1.04 s. A) With what initial velocity was Black Widow launched?  1 m = 3.28 ft B) What was Black Widow’s velocity just before she grabbed the speeder?  Assume upwards is the positive direction.
In Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it.  Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head.   Assume the gravity is the same as that of Earth and upwards is the positive direction.  Also, 1 mile = 1609 m.  A) How high up is the the ledge you jumped from as measured from the wyvern’s head?  B) What is your velocity when you hit the wyvern?
A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax