Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 44, Problem 33P

(a)

To determine

The value of Planck length.

(b)

To determine

The value of Planck time.

Blurred answer
Students have asked these similar questions
Classical general relativity views the structure of spacetime as deterministic and well defined down to arbitrarily small distances. On the other hand, quantum general relativity forbids distances smaller than the Planck length given by L = (hG/c3)1/2. (a) Calculate the value of the Planck length. The quantum limitation suggests that after the Big Bang, when all the presently observable section of the Universe was contained within a point-like singularity, nothing could be observed until that singularity grew larger than the Planck length. Because the size of the singularity grew at the speed of light, we can infer that no observations were possible during the time interval required for light to travel the Planck length. (b) Calculate this time interval, known as the Planck time T, and state how it compares with the ultrahot epoch mentioned in the text.
The geometry of spacetime in the Universe on large scales is determined by the mean energy density of the matter in the Universe, ρ. The critical density of the Universe is denoted by ρ0 and can be used to define the parameter Ω0 = ρ/ρ0. Describe the geometry of space when: (i) Ω0 < 1; (ii) Ω0 = 1; (iii) Ω0 > 1. Explain how measurements of the angular sizes of the hot- and cold-spots in the CMB projected on the sky can inform us about the geometry of spacetime in our Universe. What do measurements of these angular sizes by the WMAP and PLANCK satellites tell us about the value of Ω0?
Consider a cosmological spacetime in which the line element is given by ds? = a²(t)(-dt + dr² + dy² + dz²), where a(t) > 0 is the scale factor. Two light rays tangent to l = (1,1,0, 0) and l = (1,0, 1,0) are received at time t = u" = (a-'(to), 0, 0, 0). Compute the observed angle between the correspond- ing images. to by someone with 4-velocity
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning