Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 36AP
To determine
Why the following reaction could not occur.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
O Two deuterium atoms (H) react to produce tritium (H) and hydrogen (H) according
to the following reaction:
+
+
|H
2.014 102 u
2.014 102 u
3.016 050 u
1.007 825 u
What is the energy (in MeV) released by this deuterium-deuterium reaction?
For the following reaction, what is the energy released, in GJ/mol? (1 GJ = 1E9 J)
Use 2.998E8 m/s as the speed of light
1 a m u has a mass of 1.6605E-27 kg
A + 1n → C + D
A
n
C
D
mass (amu)
6.1450
1.0087
3.0221
4.0834
Express your answer as a positive value
For the following reaction, what is the energy released, in GJ/mol? (1 GJ = 1E9 J)
Use 2.998E8 m/s as the speed of light
1 a m u has a mass of 1.6605E-27 kg
A + B → C + D
A
B
C
D
mass (amu)
3.1706
6.3211
4.1531
5.1703
Chapter 44 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 44.2 - Prob. 44.1QQCh. 44.5 - Prob. 44.3QQCh. 44.5 - Prob. 44.4QQCh. 44.8 - Prob. 44.5QQCh. 44.8 - Prob. 44.6QQCh. 44 - Prob. 1PCh. 44 - Prob. 2PCh. 44 - Prob. 3PCh. 44 - Prob. 4PCh. 44 - Prob. 5P
Ch. 44 - Prob. 6PCh. 44 - Prob. 7PCh. 44 - Prob. 8PCh. 44 - Prob. 9PCh. 44 - Prob. 10PCh. 44 - Prob. 11PCh. 44 - Prob. 12PCh. 44 - Prob. 13PCh. 44 - Prob. 14PCh. 44 - Prob. 15PCh. 44 - Prob. 16PCh. 44 - Prob. 17PCh. 44 - Prob. 18PCh. 44 - Prob. 20PCh. 44 - Prob. 21PCh. 44 - Prob. 22PCh. 44 - Prob. 23PCh. 44 - Prob. 24PCh. 44 - Prob. 25PCh. 44 - Prob. 26PCh. 44 - Prob. 27PCh. 44 - Prob. 29PCh. 44 - Prob. 30PCh. 44 - The various spectral lines observed in the light...Ch. 44 - Prob. 33PCh. 44 - Prob. 34APCh. 44 - Prob. 35APCh. 44 - Prob. 36APCh. 44 - Prob. 37APCh. 44 - Prob. 38APCh. 44 - Prob. 39APCh. 44 - Prob. 40APCh. 44 - An unstable particle, initially at rest, decays...Ch. 44 - Prob. 42APCh. 44 - Prob. 43APCh. 44 - Prob. 44APCh. 44 - Prob. 45APCh. 44 - Prob. 46CPCh. 44 - Prob. 47CPCh. 44 - Prob. 48CPCh. 44 - Prob. 49CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Unreasonable Results A particle physicist discovers a neutral particle with a mass at 2.02733 u that he assumes is two neutrons bound together. (a) Find the binding energy. (b) What is unreasonable about this result? (c) What assumptions are unreasonable or inconsistent?arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forwardThe nuclear reaction n + ¹B → 3Li + He is observed to occur when very slow-moving neutrons strike boron atoms at rest. For a particular reaction, the outgoing helium is observed to have a speed of 9.3 x 106 m/s. Determine a) the kinetic energy of the lithium in MeV. b) the total energy released by the reaction in MeV.arrow_forward
- These values may be useful for the following question(s). speed of light = 3.00 ´ 108 m/s 1 J = 1 kg·m2/s2 1 cal = 4.18 J What is the binding energy of an atom having a mass deficiency of 0.4721 amu per atom? Express your answer in kJ/mol of atoms.arrow_forwardq9arrow_forwardA particle and its anti-particle have the same mass and charge, but the charges will be of opposite polarity. A particle and its anti-particle annihilate and produce two photons. The particle has kinetic energy 2.0 MeV collides head on with its anti-particle that is at rest. Find the energy and momentum of each photon. (Given the mass of each particle is 0.632MeV/c²) Select the correct answer choice: (a) E = 1.088 MeV E = 3.264 MeV (b) (c) (d) E = 1.632 MeV E = 1.088 MeV p=1.67 MeV/c p=1.183 MeV/c p=2.366 MeV/c p=0.835 MeV/carrow_forward
- Identify the unknown X in the following decays. Part A 222 Rn → 218 Po + X 86 84 alpha particle gamma-ray photon electron O positron Part B 228 Ra 88 228 Ac + X 89 alpha particle electron gamma-ray photon O positronarrow_forwardA 212^Bi (bismuth) nucleus undergoes alpha decay, resulting in a 208^Tl (thallium) nucleus and a 4^He (helium) nucleus as per the following reaction: 212^Bi →208^ Tl + 4 ^He The masses of each nucleus is listed in the table below. Given that the bismuth atom was at rest before the reaction, if the resulting thallium nucleus is traveling 3.3 × 10^5 m/s, how fast is the helium nucleus traveling?arrow_forwardGiven the masses of various atomic particles mp = 1.0072 u, mn = 1.0087 u, me = 0.000548 u, mv[bar] = 0, md = 2.0141 u, where p ≡ proton, n ≡ neutron, e ≡ electron, v [bar] ≡ antineutrino and d ≡ deuteron. Which of the following processes is allowed by momentum and energy conservation? 1) n + n deuterium atom (electron bound to the nucleus) 2) e+ + e– → γ 3) p → n + e+ + v [bar] 4) n + p → d + γarrow_forward
- Using 21st-century technology, hydrogen fusion requires temperatures around 108 K. But, lower initial temperatures are used if the hydrogen is compressed. In the late 24th century, the starship Leinad uses such methods to fuse hydrogen at 106 K. (a) What is the kinetic energy of an H atom at 1.003106 K? (b) How many H atoms are heated to 1.003106 K from the energy of one H and one anti-H atom annihilating each other? (c) If the heated H atoms of part (b) fuse into 4 He atoms (with the loss of two positrons per 4 He formed), how much energy (in J) is generated? (d) How much more energy is generated by the fusion in (c) than by the hydrogen-antihydrogen collision in (b)? (e) Should the captain of the Leinad change the technology and produce 3 He (mass = 3.01603 amu) instead of 4 He?arrow_forwardAn electron and a positron, each with a kinetic energy of 2.500 MeV, annihilate, creating two photons that travel away in opposite directions.What is the frequency of each photon?arrow_forwardEach fusion reaction of deuterium (2H) and tritium (3H) releases about 20.0 MeV. The molar mass of tritium is approximately 3.02 g. What mass m of tritium is needed to create 1012 J of energy, the same as that released by exploding 250 tons of TNT? Assume that an endless supply of deuterium is available.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning