Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 44, Problem 25P
(a)
To determine
The wavelength at which the
(b)
To determine
The part of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose that the microwave radiation has a wavelength of 11.6 cm. How many photons are required to heat 265 mL of coffee from 25.0 degrees Celcius to 62.0 degrees Celcius? Assume that the coffee has the same density, 0.997 g/mL, and specific heat capacity, 4.184 J/(g.K), as water over this temperature range.
B
) a) What temperature is required for a black body spectrum to peak in the X-ray band? (Assume that E = 1 keV). What is the frequency and wavelength of a 1 keV photon? b) What is one example of an astrophysical phenomenon that emits black body radiation that peaks near 1 keV? c) What temperature is required for a black body spectrum to peak in the gamma-ray band with E = 1 GeV? What is the frequency and wavelength of a 1 GeV photon? d) What is one example of an astrophysical phenomenon that emits black body radiation that peaks at 1 GeV?
Chapter 44 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 44.2 - Prob. 44.1QQCh. 44.5 - Prob. 44.3QQCh. 44.5 - Prob. 44.4QQCh. 44.8 - Prob. 44.5QQCh. 44.8 - Prob. 44.6QQCh. 44 - Prob. 1PCh. 44 - Prob. 2PCh. 44 - Prob. 3PCh. 44 - Prob. 4PCh. 44 - Prob. 5P
Ch. 44 - Prob. 6PCh. 44 - Prob. 7PCh. 44 - Prob. 8PCh. 44 - Prob. 9PCh. 44 - Prob. 10PCh. 44 - Prob. 11PCh. 44 - Prob. 12PCh. 44 - Prob. 13PCh. 44 - Prob. 14PCh. 44 - Prob. 15PCh. 44 - Prob. 16PCh. 44 - Prob. 17PCh. 44 - Prob. 18PCh. 44 - Prob. 20PCh. 44 - Prob. 21PCh. 44 - Prob. 22PCh. 44 - Prob. 23PCh. 44 - Prob. 24PCh. 44 - Prob. 25PCh. 44 - Prob. 26PCh. 44 - Prob. 27PCh. 44 - Prob. 29PCh. 44 - Prob. 30PCh. 44 - The various spectral lines observed in the light...Ch. 44 - Prob. 33PCh. 44 - Prob. 34APCh. 44 - Prob. 35APCh. 44 - Prob. 36APCh. 44 - Prob. 37APCh. 44 - Prob. 38APCh. 44 - Prob. 39APCh. 44 - Prob. 40APCh. 44 - An unstable particle, initially at rest, decays...Ch. 44 - Prob. 42APCh. 44 - Prob. 43APCh. 44 - Prob. 44APCh. 44 - Prob. 45APCh. 44 - Prob. 46CPCh. 44 - Prob. 47CPCh. 44 - Prob. 48CPCh. 44 - Prob. 49CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that the energy E in eV of a photon is given by E=1.241106 m/A. where A is its wavelength in meters.arrow_forward(a) For what temperature is the peak of blackbody radiation spectrum at 400 nm? (b) If the temperature of a blackbody is 800 K, at what wavelength does it radiate the most energy?arrow_forwardA 900-W microwave generator in an oven generates energy quanta of frequency 2560 MHz. (a) How many energy quanta does it emit per second? (b) How many energy quanta must be absorbed by a pasta dish placed in the radiation cavity to increase its temperature by 45.0 K? Assume that the dish has a mass of 0.5 kg and that its specific heat is 0.9 kcal/kg • K. (c) Assume that all energy quanta emitted by the generator are absorbed by the pasta dish. How long must we wait until the dish in (b) is ready?arrow_forward
- (a) A certain X-ray photon has a wavelength of 18 nm. Calculate the frequency (υ) of this type of radiation. The speed of light, c = 2.998 x 108 m/s (b) Do you expect the frequency of photon of blue color light to be greater than, less than, or the same as the frequency of this X-ray photon? Explain your reasoning.arrow_forwardyou are sitting at a desk in a completely dark room. the room is at normal indoor room temperature. there is an inanimate and un-powered object on your desk (e.g., a box, pencil case, notebook,...). what wavelength of blackbody radiation is emitted from that object with greatest intensity? (assume the object has the same temperature as the rest of the room.) express your answer in microns.arrow_forwardCalculate the Compton wavelength for (a) an electron and (b) a proton. What is the photon energy for an electromagnetic wave with a wavelength equal to the Compton wavelength of (c) the electron and (d) the proton?arrow_forward
- The intensity of blackbody radiation peaks at a wavelength of 513 nm. Determine the power radiated per unit area (in W/m2) of the radiation source at this temperature.arrow_forwardYou are using a radiometer to observe the thermal radi- ation from an object that is heated to maintain its tem- perature at 1278 K. The radiometer records radiation in a wavelength interval of 12.6 nm. By changing the wave- length at which you are measuring, you set the radiome- ter to record the most intense radiation emission from the object. What is the intensity of the emitted radiation in this interval?arrow_forwardTo measure temperatures, physicists often use the variation of intensity of EM radiation emitted by an object. The wavelength at which the intensity is greatest is given by the equation: λmaxT = 0.2898 cm.K where λmax is the wavelength of greatest intensity and T is the temperature of the object in kelvins. In 1965, microwave radiation peaking at λmax = 0.107 cm was discovered coming in all directions from space. To what temperature, in a) K b) °C c) °F, does this wavelength correspond?arrow_forward
- e. X-rays having a wavelength of 0.100 nanometer are scattered off initially stationary electrons, at an angle of 40.0⁰. (i) Calculate the wavelength of the scattered electromagnetic radiation (ii) What is the percent change in the wavelength of the X-rays due to scattering at this angle?arrow_forward1arrow_forwardAn astronomer observes the spectrum of a distant star and notices that the Hydrogen alpha absorption line appears with a wavelength of 590.4 nm. This spectral line has a wavelength of 656 nm when measured in the laboratory. Choose the option below that most plausibly explains this observation. Select one: а. Some intervening material must be imposing an unusual absorption spectrum on the star's continuum radiation O b. The star is moving towards the observer with a speed of 10% of the speed of light. О с. The star is moving away from the observer with a speed of 10% of the speed of light O d. The star is moving towards the observer with a speed 10 m/s O e. The star has a very hot atmosphere е. that changes the wavelengths of the spectral linesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning