Using L'H o ^ pital's rule (Section 3.6) one can verify that lim x → + ∞ e x x = + ∞ , lim x → + ∞ x e x = 0 , lim x → − ∞ x e x = 0 In these exercises: (a) Use these results, as necessary, to find the limits of f x as x → + ∞ and as x → − ∞ . (b) Sketch a graph of f x and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility. f x = x 2 e − 2 x
Using L'H o ^ pital's rule (Section 3.6) one can verify that lim x → + ∞ e x x = + ∞ , lim x → + ∞ x e x = 0 , lim x → − ∞ x e x = 0 In these exercises: (a) Use these results, as necessary, to find the limits of f x as x → + ∞ and as x → − ∞ . (b) Sketch a graph of f x and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility. f x = x 2 e − 2 x
Using
L'H
o
^
pital's
rule (Section 3.6) one can verify that
lim
x
→
+
∞
e
x
x
=
+
∞
,
lim
x
→
+
∞
x
e
x
=
0
,
lim
x
→
−
∞
x
e
x
=
0
In these exercises: (a) Use these results, as necessary, to find the limits of
f
x
as
x
→
+
∞
and as
x
→
−
∞
. (b) Sketch a graph of
f
x
and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility.
Let g(z) =
z-i
z+i'
(a) Evaluate g(i) and g(1).
(b) Evaluate the limits
lim g(z), and lim g(z).
2-12
(c) Find the image of the real axis under g.
(d) Find the image of the upper half plane {z: Iz > 0} under the function g.
k
(i) Evaluate
k=7
k=0
[Hint: geometric series + De Moivre]
(ii) Find an upper bound for the expression
1
+2x+2
where z lies on the circle || z|| = R with R > 10. [Hint: Use Cauchy-Schwarz]
21. Determine for which values of m the function (x) = x™ is a solution to the given equation.
a. 3x2
d²y
dx²
b. x2 d²y
+11x
dy
- 3y = 0
dx
dy
dx2
x dx
5y
= 0
Chapter 4 Solutions
Calculus Early Transcendentals, Binder Ready Version
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY