Using L'H o ^ pital's rule (Section 3.6) one can verify that lim x → + ∞ e x x = + ∞ , lim x → + ∞ x e x = 0 , lim x → − ∞ x e x = 0 In these exercises: (a) Use these results, as necessary, to find the limits of f x as x → + ∞ and as x → − ∞ . (b) Sketch a graph of f x and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility. f x = x 2 e − x 2
Using L'H o ^ pital's rule (Section 3.6) one can verify that lim x → + ∞ e x x = + ∞ , lim x → + ∞ x e x = 0 , lim x → − ∞ x e x = 0 In these exercises: (a) Use these results, as necessary, to find the limits of f x as x → + ∞ and as x → − ∞ . (b) Sketch a graph of f x and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility. f x = x 2 e − x 2
Using
L'H
o
^
pital's
rule (Section 3.6) one can verify that
lim
x
→
+
∞
e
x
x
=
+
∞
,
lim
x
→
+
∞
x
e
x
=
0
,
lim
x
→
−
∞
x
e
x
=
0
In these exercises: (a) Use these results, as necessary, to find the limits of
f
x
as
x
→
+
∞
and as
x
→
−
∞
. (b) Sketch a graph of
f
x
and identify all relative extrema, inflection points, and asymptotes (as appropriate). Check your work with a graphing utility.
A factorization A = PDP 1 is not unique. For A=
7 2
-4 1
1
1
5 0
2
1
one factorization is P =
D=
and P-1
30
=
Use this information with D₁
=
to find a matrix P₁ such that
-
-1 -2
0 3
1
-
- 1
05
A-P,D,P
P1
(Type an integer or simplified fraction for each matrix element.)
Matrix A is factored in the form PDP 1. Use the Diagonalization Theorem to find the eigenvalues of A and a basis for each eigenspace.
30 -1
-
1 0 -1
400
0
0 1
A=
3 4 3
0 1 3
040
3 1 3
0 0
4
1
0
0
003
-1 0 -1
Select the correct choice below and fill in the answer boxes to complete your choice.
(Use a comma to separate vectors as needed.)
A basis for the corresponding eigenspace is {
A. There is one distinct eigenvalue, λ =
B. In ascending order, the two distinct eigenvalues are λ₁
...
=
and 2
=
Bases for the corresponding eigenspaces are {
and ( ), respectively.
C. In ascending order, the three distinct eigenvalues are λ₁ =
=
12/2
=
and 3 = Bases for the corresponding eigenspaces are
{}, }, and {
respectively.
Chapter 4 Solutions
Calculus Early Transcendentals, Binder Ready Version
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY