For a curved bar of rectagular cross section subjected to a bending couple M, show that the radial stress at the neutral surface is
and compute the value of σr for the curved bar of Concept Applications 4.10 and 4.11. (Hint: consider the free-body diagram of the portion of the beam located above the neutral suface.)
Fig. P4.191
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Mechanics of Materials, 7th Edition
- The couple M is applied to a beam of the cross section shown in a plane forming an angle β with the vertical. Determine the stress at (a) point A, (b) point B, (c) point D.arrow_forward4.23arrow_forwardIn the mechanism shown below, the distributed load W is 300 N/m and the angle 0 is 35", knowing that link AB has 1.5cm x 1.5cm cross-section. W |C 1.5 m 1-What is the average normal stress at section b-b?arrow_forward
- The couple M acts in a vertical plane and is applied to a beam oriented as shown. Determine (a) the angle that the neutral axis forms with the horizontal plane, (b) the maximum tensile stress in the beamarrow_forwardM = 500 Nm PROBLEM 4.2 В Knowing that the couple shown acts in the vertical plane, determine the stress at (a) point A, and (b) point B. [Ans. (a) -116.4 MPa (b) -87.3 MPa] 30 mm 40 mm Fig. P4.2arrow_forwardProblem 5 Rigid member ABC is supported with two links BE and CD which have a cross section area of 230 and 300 mm? respectively. Determine the maximum applied force Q knowing that the maximum movement of point E is 0.45 mm. D Brass E - 105 GPa 230 mm B C E Aluminum E = 70 GPa 150 mm 65 mm 230 mm Area given is for member AB not BE Cross section area of links AB and CD are 230 and 300 mm^2 respectively.arrow_forward
- A beam has a rectangular cross-section and is subjected to the stress the distribution is shown in Fig. a. Determine the internal moment M at the section caused by the stress distribution (a) using the flexure formula, (b) by finding the resultant of the stress distribution using basic principles.arrow_forwardA copper strip (E = 105 GPa) and an aluminum strip (E = 75 GPa) are bonded together to form the composite beam shown. Knowing that the beam is bent about a horizontal axis by a couple of moment M = 35 N.m, determine the maximum stress in (a) the aluminum strip, (b) the copper strip. Fig. P4.39 Aluminum Copper 24 mm 6 mm 6 mmarrow_forwardA 5.0-m-long simply supported timber beam carries two concentrated loads as shown. The cross-sectional dimensions of the beam are also shown. Assume L1 = 1.0 m, L2 = 2.0m, P = 12 kN, Q = 31 kN, a = 135 mm, b = 150 mm, c = 90 mm, and d = 445 mm. (a) At section a-a, determine the magnitude of the shear stress in the beam at point H. (b) At section a-a, determine the magnitude of the shear stress in the beam at point K. (c) Determine the maximum horizontal shear stress that occurs in the beam at any location within the 5.0-m span length. (d) Determine the maximum compression bending stress that occurs in the beam at any location within the 5.0-m span length. a H d В D Karrow_forward
- The member having a rectangular cross-section, Fig. a, is designed to resist a moment of 40 N # m. In order to increase its strength and rigidity, it is proposed that two small ribs be added at its bottom, Fig. b. Determine the maximum normal stress in the member for both cases.arrow_forwardThe couple M is applied to a beam of the cross section shown in a plane forming an angle β with the vertical. Determine the stress at (a) point A, (b) point B, (c) point D.arrow_forwardcomplete solutionarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY