Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 54AP
To determine
State the reason for the impossibility of finding the speed of Doppler shifted photons that are absorbed during the transition to first excited state.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle is restricted to a one-dimensional box of length L. It absorbs a photon whose wavelength is 5.40 nm and jumps from the ground state to the n = 8 level. It then jumps back to the n=3 state. Determine the wavelength (in nm) of the emitted photon._________
A particle is restricted to a one-dimensional box of length L. It absorbs a photon whose wavelength is 5.00 nm and jumps from the ground state to the n = 6 level. It then jumps back to the n = 3 state. Determine the wavelength (in nm) of the emitted photon.
An electron is trapped in a one-dimensional box that is 501 nm wide. Initially, it is in the n = 3 energy level but, after a photon
is absorbed, the electron is in the n = 6 energy level. What was the wavelength of the absorbed photon?
wavelength: .0306
Eventually, the electron ends up in the ground state. As it does so, one or more photons are emitted during those transitions.
Find the wavelengths of the least energetic and most energetic photons that might be emitted during all the possible transitions
to the ground state.
wavelength of least energetic photon:
wavelength of most energetic photon:
.0753
Incorrect
.0709
m
Incorrect
m
E
Chapter 41 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 900-W microwave generator in an oven generates energy quanta of frequency 2560 MHz. (a) How many energy quanta does it emit per second? (b) How many energy quanta must be absorbed by a pasta dish placed in the radiation cavity to increase its temperature by 45.0 K? Assume that the dish has a mass of 0.5 kg and that its specific heat is 0.9 kcal/kg • K. (c) Assume that all energy quanta emitted by the generator are absorbed by the pasta dish. How long must we wait until the dish in (b) is ready?arrow_forwardAn electron in a box is in the ground state with energy 2.0 eV. (a) Find the width of the box. (b) How much energy is needed to excite the electron to its first excited state? (c) If the electron makes a transition from an excited state to the ground state with the simultaneous emission of 30.0-eV photon, find the quantum number of the excited state?arrow_forwardA. Electrons are ejected from a metal surface with speeds ranging up to 4.72E+5m/s when light with a wavelength of lambda = 650nm is used. What is the work function (in eV) of the surface? B. What is the cutoff frequency for this surface?arrow_forward
- An isolated atom of certain element emits light of wavelength 529 nm when the atom falls from its sixth excited state into its third excited state. The atom emits a photon of wavelength 422 nm when it drops from its seventh excited state into its third excited state. frind wavelength of the light radiated when the atom makes a transition from its seventh to its sixth excited state, in um. a. 21 b. 2.09 c. 2086.34 d 0.0209 e. 208. 63arrow_forwardAn electron confined to a box absorbs a photon with wavelength λ. As a result, the electron makes a transition from the n = 1 state to the n = 3 state. (a) Find the length of the box. (b) What is the wavelength λ' of the photon emitted when the electron makes a transition from the n = 3 state to the n = 2 state?arrow_forwardA photon of wavelength 0.59242 nm strikes a free electron that is initially at rest. The photon is scattered straight backward. What is the speed of the recoil electron after the collision? V = iarrow_forward
- An electron within the hydrogen atom is excited from n1 to n4. The electron then "falls" back to ni in two steps (n4 -> n2, n2 -> n1). Which of the following statements is true about the light emitted during this process? One photons will be emitted. Two photons will be emitted. O Three photons will be emitted. Four photons will be emitted.arrow_forwardA photon with wavelength of 0.1100 nmnm collides with a free electron that is initially at rest. After the collision, the photon's wavelength is 0.1142 nmnm. A) What is the kinetic energy of the electron after the collision? Express your answer in electronvolts. B) What is the speed of the electron after the collision? Express your answer with the appropriate units. C) If the electron is suddenly stopped (for example, in a solid target), all of its kinetic energy is used to create a photon. What is the wavelength of this photon? Express your answer with the appropriate units.arrow_forwardThe distance between atoms in a crystal of NaCl is 418.5 nm. The crystal is being studied in a neutron diffraction experiment. At what speed (in m/s) must the neutrons be moving so that their de Broglie wavelength is the same length as the spacing between the atoms? (Assume the neutrons are non-relativistic.)arrow_forward
- 5.40x106 atoms are excited to an upper energy level at t = 0 s. At the end of 30.0 ns , 90.0% of these atoms have undergone a quantum jump to the ground state. You may want to review (Pages 1198 - 1200). Part A How many photons have been emitted? ΥΠ ΑΣφ ? photons Submit Previous Answers Request Answer X Incorrect; Try Again; 5 attempts remaining Part B What is the lifetime of the excited state? ην ΑΣφ ? ns Submit Request Answerarrow_forwardAn electron is bound to a region of space by a springlike force with natural frequency 04.082 x 10¹5 rad/s. a) Find the ground state energy of this electron. Give your answer in units of eV. b) Suppose the electron absorbs a photon and jumps from the ground state to the first excited state. What is the wavelength of the photon? Give your answer in units of nm.arrow_forwardAn electron orbiting a hydrogen atom transitions from n=6 to n=2. What is the wavelength of the photon emitted? If the hydrogen atom (mass 1.67*10^(-27 kg)) is isolated and starts at rest, then the atom will move in the opposite direction of the photon to conserve momentum. How fast is it going? m/s nmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning