Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 41, Problem 62CP

(a)

To determine

Plot of wave function as a function of x.

(a)

Expert Solution
Check Mark

Answer to Problem 62CP

The wave function was plotted as a function of x.

Explanation of Solution

Write the given wave function of the electron.

    ψ(x)={Aeαxforx>0Ae+αxforx<0                                                                                    (I)

Here, ψ(x) is the wave function, A is the constant, α is a constant.

Write the formula to calculate the probability of finding a particle in a certain range.

    P=abψ*ψdx:                                                                                                           (II)

Here, P is the probability, ψ* is the complex conjugate of the wave function, [a,b] is the range in which the probability is found out.

Refer equation (I) and plot the wave function as a function of x.

Figure 1 below shows the plot of wave function.

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term, Chapter 41, Problem 62CP , additional homework tip  1

Conclusion:

The wave function was plotted as a function of x.

(b)

To determine

Plot of probability density as a function of x.

(b)

Expert Solution
Check Mark

Answer to Problem 62CP

The probability density was plotted as a function of x.

Explanation of Solution

Write the given wave function of the electron.

    ψ(x)={Aeαxforx>0Ae+αxforx<0                                                                                    (I)

Here, ψ(x) is the wave function, A is the constant, α is a constant.

Write the formula to calculate the probability of finding a particle in a certain range.

    P=abψ*ψdx:                                                                                                          (II)

Here, P is the probability, ψ* is the complex conjugate of the wave function, [a,b] is the range in which the probability is found out.

Refer equation (II) and plot the probability density as a function of x.

Figure 2 below shows the plot of wave function.

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term, Chapter 41, Problem 62CP , additional homework tip  2

Conclusion:

The probability density was plotted as a function of x.

(c)

To determine

To show that ψ(x) is physically reasonable wave function.

(c)

Expert Solution
Check Mark

Answer to Problem 62CP

The ψ(x) satisfy all the conditions to be a reasonable wave function. Thus ψ(x) is a physically reasonable wave function.

Explanation of Solution

Write the given wave function of the electron.

    ψ(x)={Aeαxforx>0Ae+αxforx<0                                                                                     (I)

Here, ψ(x) is the wave function, A is the constant, α is a constant.

For the wave function to be a reasonable wave function, there are set of condition.

The ψ(x) has to be continuous to be a reasonable wave function. The given wave function is continuous everywhere except at infinity.

As x± the ψ(x) must go to zero to be a reasonable wave function. The given wave function satisfy this condition.

The ψ(x) can also be normalized which is an essential requirement to be a wave function.

The ψ(x) satisfy all the conditions to be a reasonable wave function. Thus ψ(x) is a physically reasonable wave function.

Conclusion:

The ψ(x) satisfy all the conditions to be a reasonable wave function. Thus ψ(x) is a physically reasonable wave function.

(d)

To determine

To normalize the wave function.

(d)

Expert Solution
Check Mark

Answer to Problem 62CP

The normalization constant of the given wave function is α.

Explanation of Solution

Write the given wave function of the electron.

    ψ(x)={Aeαxforx>0Ae+αxforx<0                                                                                     (I)

Here, ψ(x) is the wave function, A is the constant, α is a constant.

Write the condition for normalized wave function.

    |ψ|2dx=1

The wave function is symmetric. Thus re-write the above condition.

    20|ψ|2dx=1

Substitute equation (I) in the above equation.

    2A20e2αxdx=1(2A22α)(ee0)=12A22α=1A=α

Conclusion:

The normalization constant of the given wave function is α.

(e)

To determine

The probability of finding the electron in the range 12αx12α.

(e)

Expert Solution
Check Mark

Answer to Problem 62CP

The probability of finding the particle in the range 12αx12α is 0.632.

Explanation of Solution

Refer section (d) and write the given normalized wave function of the electron.

    ψ(x)={αeαxforx>0αe+αxforx<0                                                                                  (II)

Here, ψ(x) is the wave function, and α is a constant.

Write the formula to calculate the probability of finding a particle in a certain range.

    P=ab|ψ|2dx:                                                                                                      (III)

Here, P is the probability, and [a,b] is the range in which the probability is found out.

Refer equation (II) in equation (III) to determine probability in range 12αx12α.

    P=(a)21/2α1/2αe2αxdx=2(a)2x=01/2αe2αxdx=(2α2α)(e2α/2α1)=(1e1)=0.632

Conclusion:

The probability of finding the particle in the range 12αx12α is 0.632.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…

Chapter 41 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill