Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 41, Problem 60CP

(a)

To determine

The potential energy of the system.

(a)

Expert Solution
Check Mark

Answer to Problem 60CP

The potential energy of the system is 7kee23d.

Explanation of Solution

Write the equation for potential energy.

    U=keq1q2r                                                                                             (I)

Here, U is the potential energy, ke is the Coulomb constant, q1 is the first charge, q2 is the second charge and r is the distance between the charges.

Substitute e for q1 and q2 and d for r in the equation (I).

    U=kee2d                                                                                                         (II)

Here, e is the charge and d is the distance between the adjacent charges.

Write the equation for the potential energy of the system.

    U=U12+U13+U14+U23+U24+U34                                                          (III)

Here, U12 is the potential energy between the first electron and the first ion, U13 is the potential energy between the two electrons, U14 is the potential energy between the first electron and the second ion, U23 is the potential energy between the first ion and the second electron, U24 is the potential energy between the two ions, and  U34 is the potential energy between the second electron and the second ion.

Conclusion:

Substitute equation (II) in equation (III) for each pair of energy.

    U=(kee2d+kee22dkee23d)+(kee2d+kee22d)kee2d=kee2d(1+12131+121)=7kee23d                                       (IV)

Thus, the potential energy of the system is 7kee23d.

(b)

To determine

The minimum kinetic energy of the two electrons.

(b)

Expert Solution
Check Mark

Answer to Problem 60CP

The minimum kinetic energy of the two electrons is h236med2.

Explanation of Solution

Let the minimum energy of the electron be E1.

    E1=h28meL2

Here, h is the Plank’s constant, me is the mass of electron and L is the length of the box.

Substitute 3d for L in the above equation.

    E1=h28me(3d)2                                                                                                (V)

Write the equation for the minimum kinetic energy of the two electrons.

    K=2E1                                                                                                (VI)

Here, K is the minimum kinetic energy of the two electrons.

Conclusion:

Substitute equation (V) in equation (VI) to find K.

    K=2(h28me(3d)2)=h24me(9d2)=h236med2                                                                                        (VII)

Thus, the minimum kinetic energy of the two electrons is h236med2.

(c)

To determine

The value of d when the total energy is minimum.

(c)

Expert Solution
Check Mark

Answer to Problem 60CP

The value of d when the total energy minimum is 49.9pm.

Explanation of Solution

Write the equation for the total energy.

    E=K+U

Here, E is the total energy.

Substitute equation (IV) and (VII) in the above equation to find E.

    E=h236med27kee23d                                                                             (VIII)

Write the condition for the energy to be minimum.

    dEd(d)=0

Conclusion:

Substitute equation (VIII) in the above equation to find d.

    d(h236med27kee23d)d(d)=0(2)(h236med3)(1)(7kee23d2)=0h218med3=7kee23d2

Rearrange the above equation for d.

  d=3h27(18me)kee=h242mekee2                                                                                                (IX)

Substitute 6.626×1034Js for h, 8.99×109Nm2/C2 for ke, 9.11×1031kg for me and 1.60×1019C for e in the above equation to find d.

    d=(6.626×1034Js)242(9.11×1031kg)(8.99×109Nm2/C2)(1.60×1019C)2=4.99×1011m=(49.9×1012m)(1012pm1m)=49.9pm

Thus, the value of d when the total energy is minimum is 49.9pm.

(d)

To determine

Compare the value of d to the spacing of atoms in lithium.

(d)

Expert Solution
Check Mark

Answer to Problem 60CP

The lithium inter-atomic spacing is in the same order of magnitude as the interatomic spacing of 2d.

Explanation of Solution

Write the equation for volume.

    V=Nd3                                                                                                      (X)

Here, V is the volume and N is the number of atoms.

Write the equation for density.

    ρ=NmV

Here, m is the mass of one atom and ρ is the density.

Substitute equation (X) in the above equation and rearrange to find d.

    ρ=NmNd3=md3d=(mρ)13

Conclusion:

Substitute 6.94g/mol for m and 0.530g/cm3 for ρ in the above equation to find d.

    d=(6.94g/mol0.530g/cm3)13=((6.94g/mol)(1mol6.022×1023atoms)0.530g/cm3)13=(279×1012m)(1012pm1m)=279pm

The lithium interatomic spacing is 5.59 times larger than d.

Thus, the lithium interatomic spacing is in the same order of magnitude as the interatomic spacing 2d.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below. F(N) 4 3 A 2 t(s) 1 2 3 45 (a) Find the impulse of the force over the 5.00-s time interval. == N⚫s (b) Find the final velocity the particle attains if it is originally at rest. m/s (c) Find its final velocity if its original velocity is -3.50 î m/s. V₁ m/s (d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s. = avg N
••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.
Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.

Chapter 41 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Intro Spectroscopy
Physics
ISBN:9781305221796
Author:PAVIA
Publisher:Cengage