Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 3P
(a)
To determine
The value of normalization constant
(b)
To determine
The probability of finding the particle in between
(c)
To determine
The expectation value of particle’s position.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a simple model for a radioactive nucleus, an alpha particle (m = 6.64 * 10-27 kg) is trapped by a square barrier that has width 2.0 fm and height 30.0 MeV.
(a) What is the tunneling probability when the alpha particle encounters the barrier if its kinetic energy is 1.0 MeV below the top of the barrier (Fig. )?
(b) What is the tunneling probability if the energy of the alpha particle is 10.0 MeV below the top of the barrier?
The wave function for a quantum particle is given by ?(?)=??between ?=0and ?=1.00, and ?(?)=0elsewhere. Find (a) the value of the normalization constant ?, (b) the probability that the particle will be found between ?=0.300and ?=0.400, and (c) the expectation value of the particle’s position.
A quantum particle in an infinitely deep square well has a wave function given by ψ2(x) = √2/L sin (2πx/L)for 0 ≤ x ≤ L and zero otherwise. (a) Determine the expectation value of x. (b) Determine the probability of finding the particle near 1/2 L by calculating the probability that the particle lies in the range 0.490L ≤ x ≤ 0.510L. (c) What If? Determine the probability of finding the particle near 1/4L bycalculating the probability that the particle lies in the range 0.240L ≤ x ≤ 0.260L. (d) Argue that the result of part (a)does not contradict the results of parts (b) and (c).
Chapter 41 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Similar questions
- A wave function of a particle with mass m is given by (x)={Acosax, 2ax+ 2a;0, otherwise where a =1.001010/m. (a) Find the normalization constant. (b) Find the probability that the particle can be found on the interval 0x0.51010m. (c) Find the particle's average position. (d) Find its average momentum. Find its average kinetic energy 0.51010mx+0.510-10m.arrow_forwardA wave function has the value A sin x between x= 0 and π but zero elsewhere. Normalize the wave function and find the probability that the particle is (a) between x = 0 and x = π/4 and (b) between x= 0 and π/2.arrow_forwardThe wave function of a certain particle is y= A cos²x for -t/2 < xarrow_forwardV (x) = 00, V(x) = 0, x<0,x 2 a 0arrow_forwardThe wave function of a particle at t = 0 is given as: ψ(x, t) = C exp[ -|x|/x0] where C and x0 are constants. (a) What is the relation between C and x0?(b) Calculate the expectation value of position x of the particle.(c) Suggest a region in x in which the probability of finding the particle is 0.5.arrow_forward(a) Find the normalization constant A for a wave function made up of the two lowest states of a quantum particle in a box extending from x= 0 to x = L: x) = A sin + 4 sin L. (b) A particle is described in the space -aSxs a by the wave function (x) = A cos + B sin 2a a Determine the relationship between the values of A and B required for normalization.arrow_forwardFor a quantum particle of mass m in the ground state of a square well with length L and infinitely high walls, the uncertainty in position is Δx ≈ L. (a) Use the uncertainty principle to estimate the uncertainty in its momentum.(b) Because the particle stays inside the box, its average momentum must be zero. Its average squared momentum is then ⟨p2⟩ ≈ (Δp)2. Estimate the energy of the particle. (c) State how the result of part (b) compares with the actual ground-state energy.arrow_forwardA quantum particle (mass m) is confined in a 1-dimensional box represented by the interval 0 ≤ x < L. Its wave function is o(x) { Nx(Lx) when 0 < x < L, otherwise. 0 a) Find the appropriate value for the normalization constant N. b) Find the expectation value of the position of the particle. c) Find the expectation value of the momentum of the particle. d) Find the expectation value of the kinetic energy of the particle.arrow_forward2arrow_forwardThe wave function for a quantum particle is a 4(x) π (x² + a²) for a > 0 and -*arrow_forwardA quantum particle (mass m) is confined in a 1-dimensional box represented by the interval 0 ≤ x < L. Its wave function is ó(x) = { Na(L- x) when 0 < aarrow_forwardAn electron is trapped in a region between two infinitely high energy barriers. In the region between the barriers the potential energy of the electron is zero. The normalized wave function of the electron in the region between the walls is ψ(x) = Asin(bx), where A=0.5nm1/2 and b=1.18nm-1. What is the probability to find the electron between x = 0.99nm and x = 1.01nm.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning