Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 41, Problem 61CP

(a)

To determine

The probability of finding an electron in n=1 state.

(a)

Expert Solution
Check Mark

Answer to Problem 61CP

The probability of finding an electron in n=1 state is 0.200.

Explanation of Solution

A quantum dot is modeled as a one-dimensional box with the length of 1.00 nm. Here, the given limits to find the probability of finding the electron is between x1=0.150 m and x2=0.350 nm for n=1 state.

Write to formula to find the probability of finding the electron

    Pn=x1x2|ψn|2dx                                                                         (I)

Here, Pn is the probability of finding the electron in nth state, Ψn is the wavefunction of n state and x1 and x2 are the limits.

Write the formula to find the wave function

    ψn=2Lsin(nπxL)                                                                 (II)

Here, L is the length of the box.

Conclusion:

Substitute equation (II) in (I) and solve

Pn=x1x2[2Lsin(nπxL)]2dx

Pn=2Lx1x2sin2(nπxL)dx                                                                  (III)

Substitute 1 for n, 0.150 nm for x1, 0.350 nm for x2, 1.00 nm for L in equation (III) to find the value of P1

P1=(21.00 nm)0.1500.350sin2(πx1.00 nm)dx

Note: [sin2(ax)dx=(x2)(14a)sin(2ax)], using this in the above equation and solving

P1=(2.00/nm)[x21.00 nm4πsin(2πx1.00 nm)]0.150 nm0.350 nm=(1.00/nm)[x1.00 nm2πsin(2πx1.00 nm)]0.150 nm0.350 nm=(1.00/nm){(0.350 nm0.150 nm)1.00 nm2π[sin(0.700π)sin(0.300π)]}=0.200

Thus, the probability of finding an electron in n=1 state is 0.200.

(b)

To determine

The probability of finding an electron in n=2 state.

(b)

Expert Solution
Check Mark

Answer to Problem 61CP

The probability of finding an electron in n=2 state is 0.351.

Explanation of Solution

The probability of finding the electron is n=2 state.

Substitute 2 for n, 0.150 nm for x1, 0.350 nm for x2, 1.00 nm for L in equation (III) to find the value of P2

P2=(21.00 nm)0.1500.350sin2(2πx1.00 nm)dx

Note: [sin2(ax)dx=(x2)(14a)sin(2ax)], using this in the above equation and solving

P2=(2.00/nm)[x21.00 nm8πsin(4πx1.00 nm)]0.150 nm0.350 nm=(1.00/nm)[x1.00 nm4πsin(4πx1.00 nm)]0.150 nm0.350 nm=(1.00/nm){(0.350 nm0.150 nm)1.00 nm4π[sin(1.40π)sin(0.600π)]}=0.351

Thus, the probability of finding an electron in n=2 state is 0.351.

(c)

To determine

The energy of n=1 state in electron volt.

(c)

Expert Solution
Check Mark

Answer to Problem 61CP

The energy of n=1 state in electron volt is 0.377 eV.

Explanation of Solution

The mass of the electron is 9.11×1031 kg and length of the quantum box is 1.00 nm.

Write the formula to find the energy of nth state

    En=n2h28mL2                                                                 (IV)

Here, h is Planck’s constant [h=6.63×1034 Js], m is the mass of the particle and En is the nth state energy.

Conclusion:

Substitute 1 for n, 1.00 nm for L, 9.11×1031 kg for m and  6.63×1034 Js for h in equation (IV) to find value of E1

E1=12×(6.63×1034 Js)28×(9.11×1031 kg)(1.00 nm)2=0.377 eV

Thus, the energy of n=1 state in electron volt is 0.377 eV.

(d)

To determine

The energy of n=2 state in electron volt.

(d)

Expert Solution
Check Mark

Answer to Problem 61CP

The energy of n=2 state in electron volt is 1.57 eV.

Explanation of Solution

Substitute 2 for n, 1.00 nm for L, 9.11×1031 kg for m and  6.63×1034 Js for h in equation (IV) to find value of E2

E2=22×(6.63×1034 Js)28×(9.11×1031 kg)(1.00 nm)2=1.57 eV

Thus, the energy of n=2 state in electron volt is 1.57 eV.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 41 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning