UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 41.37E
(a)
To determine
The frequency, energy
(b)
To determine
The frequency, energy
(c)
To determine
The frequency, energy
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the frequency, energy (in keV), and wavelength of the Ka x ray for the elements (a) calcium (Ca, Z = 20); (b) cobalt (Co, Z = 27); (c) cadmium (Cd, Z = 48).
The Ka X-ray emission line of tungsten occurs at
λ = 0.021 nm. The energy difference between K and L levels
in this atoms is about
(a) 0.51 MeV (b) 1.2 MeV (c) 59 keV (d) 13.6 eV
5
6
À (x10-² nm)
7
8
9
10
Relative intensity
Mo
9
9
12
vith
→ To 15.2
→ To 37.2
Chapter 41 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The first line in the Lyman series of H is at 82257.098 cm-1, while that line in the spectrum of deuterium (D) is at 82281.476 cm-1.Check the option that contains the mass of the D nucleus, calculated from this spectral information. Assume that h = 6,63 x 10-34 J.s, c = 2,99 x 108 m/s, m(elétron) = 9,11 x 10-31 kg e m(próton) = 1,67 x 10-27 kgarrow_forwardUsing the equation E=Rh(1/22 - 1/nh2), determine the energies and wavelengths of the visible emission bods in the atomic spectrum of hydrogen arising from nh= 4, 5, and 6.arrow_forward4. a. An electron in a hydrogen atom falls from an initial energy level of n-5 to a final level of n - 2. Find the energy, frequency, and wavelength of the photon that will be [For hydrogen: E-13.6 eV/n²] emitted for this sequence. b. A photon of energy 2.794 eV is absorbed by a hydrogen atom, causing its electron to be released with a kinetic energy of 2.250 eV. In what energy level was the electron? c. Find the wavelength of the matter wave associated with a proton moving at a speed of 350 m/s.arrow_forward
- Characteristic x‐rays emitted by molybdenum have a wavelength of 0.072 nm. What is the energy of one of these x‐ray photons? [Answer: 17,371 eV = 17.4 keV]arrow_forwardMeasured X-ray energies for Silver (Z=47) are: K_alpha= 21.990 keV, K_beta=25.145. The binding energy of the K shell electron in Silver is 25.514 keV. Using these find the energy of L_alpha X-ray and binding energy of the L electron.arrow_forwardA proton is fired from very far away towards a nucleus with charge Q = 120 e, where e is the electronic charge. It makes a closest approach of 10 fm to the nucleus. The de-Broglie wavelength (in units of fm) of the proton at its start is [Take the proton mass, mp = (5/3)× 10-²7 kg; h/e= 4.2 × 10-¹5 р J-s/C: 1 ATTEO = 9× 10⁹ m/F; 1 fm = 10-¹5 m] (2013 Adv.)arrow_forward
- An X-ray photon with a wavelength of 0.944 nm strikes a surface. The emitted electron has a kinetic energy of 961 eV . What is the binding energy of the electron in kJ/mol ? [Note that KE=12mv2 and 1 electronvolt (1eV)=1.602×10−19J. (Please type answer no write by hend)arrow_forwardThe x-ray spectrum is for 35.0 keV electrons striking a molybdenum (Z= 42) target. If you substitute a silver (Z = 47) target for the molybdenum target, will (a) lmin, (b) the wavelength for the Ka line, and (c) the wavelength for the Kb line increase, decrease, or remain unchanged?arrow_forwardCalculate the minimum-wavelength x-ray that can be produced when a target is struck by an electron that has been accelerated through a potential difference of 21.0 kV and 1.10 ✕ 102 kV. (a) 21.0 kV ?min = m (b) 1.10 ✕ 102 kV ?min = m (c) What happens to the minimum wavelength as the potential difference increases? increasesdecreases remains the samearrow_forward
- The energies for an electron in the K, L, and M shells of the tungsten atom are -69,500 eV, -12,000 eV, and -2200 eV, respectively. Calculate the wavelengths of the Ka and Kb x rays of tungsten.arrow_forwardThree isotopes of hydrogen occur in nature; ordinary hydrogen, deuterium, and tritium. Their nuclei consist of, respectively, 1 proton, 1 proton and 1 neutron (deuteron), and 1 proton and 2 neutrons (triton). (a) Determine Rydberg constants for deuterium and tritium. (b) Determine the wavelength difference between the Balmer α lines of deuterium and tritium. (c) Determine the wavelength difference between the Balmer α lines of hydrogen and tritium. Note: The difference in this case would be caused by the nuclear mass. In deriving the Bohr atom, the first order of approximation was to assume that the nucleus doesn't move at all. The correction to this can be done by replacing the mass of the electron with the reduced mass of the electron-nucleus system, where, as you studied in mechanics, the reduced mass is given by μ=m1m2/(m1+m2). Additionally, the Balmer series is the one that terminates in the n=2 level with the α line corresponding to the n=3→n=2 transition.arrow_forwardA triply ionised beryllium atom (Be+++, Z = 4) has only one electron in orbit about the nucleus. If the electron decays from the n 7 level to the first excited state (n = 2), calculate the wavelength of the photon emitted. Please give your answer in units of nm, rounded to one decimal place. Answer:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College