UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 41, Problem 41.23DQ
To determine
Whether a hydrogen atom emits x rays and if not why not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Can a hydrogen atom emit x rays? If so, how? If not, why not?
The first line in the Lyman series of H is at 82257.098 cm-1, while that line in the spectrum of deuterium (D) is at 82281.476 cm-1.Check the option that contains the mass of the D nucleus, calculated from this spectral information.
Assume that h = 6,63 x 10-34 J.s, c = 2,99 x 108 m/s, m(elétron) = 9,11 x 10-31 kg e m(próton) = 1,67 x 10-27 kg
69.5
QUESTION 11
Binding Energy 3
If an electron is removed from the K-shell by a high energy photon of energy Ek and an electron in the L-shell then transfers to the K-shell and emits a photon
of energy EL What is the ratio of energies of the emitted photon to incident photon i.e. EL/EK.
20
80
18 e 32 e
12 e
2e
74pt
110 n
K
L
M.N
0P
n=4
-0.08
keV
n=D6
n=D2
n=D3
12keV
69.5 keV1 -3 keV -0.6
keV
-0.02
keV
Click Save and Submit to save and submit. Click Save All Answers to save all answers.
Sav
LO
6°C Cloudy
Chapter 41 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Can a hydrogen atom absorb a photon whose energy is greater than 13.6 eV?arrow_forward(a) An aspiring physicist wants to build a scale model of a hydrogen atom for her science fair project. If the atom is 1.00 m in diameter, how big should she try to make the nucleus? (b) How easy will this be to do?arrow_forwardThe wave function for a Hydrogen atom, at time t = 0 is: = V(21,0,0) + 12,1,0) + v?[2, 1, 1) + v3 |2,1, –1). |亚) considering that the notation is n,l, mi). If spin and radioactive transitions are ignored. a) Calculate the expectation value. b) Calculate the wave function at arbitrary time t. c) What is the probability of finding the system in the state with I = 1 and m = 1, as a function of time? d) What is the probability of finding the electron at a distance of 10 ^ -10cm. of the proton? (at t = 0).arrow_forward
- A 12.5 eV electron beam is used to excite a gaseous hydrogen atom at room temperature. Determine the wavelengths and the corresponding series of the lines emitted.arrow_forwardWhich hydrogen like atom has the wavelength difference between the first line of Lyman and Balmer is equal to 59.3nm?arrow_forwardArrange the following H atom electron transitions in order of increasing frequency of the photon absorbed or emitted:(a) n=2 to n=4(b) n=2 to n=1(c) n=2 to n=5(d) n=4 to n=3arrow_forward
- Compare the Balmer series of hydrogen with the series where n ℓ= 4 for the ionized helium atom He+. What is the difference between the wavelengths of the L ∝ and Lℓ line of hydrogen and the nu = 6 and 8 of He+? Is there a wavelength of the Balmer series that is very similar to any wavelength values where n ℓ = 4 in He+? Explain.arrow_forwardAn atom in an excited state has a mass of 63.332 and then decays to a mass of 63.329 amu by emitting 3 x-rays of equal energy. a) What is the energy (in keV) and wavelength of each x-ray? b) If one of these X-rays is absorbed by a neighbouring atom and ejects a K-shell electron, what is the velocity of the electron? (note: K-shell binding energy is 43 keV)arrow_forwardWhat are possible emission wavelengths when the electron of a hydrogenatom release energy and make transition downward from n =3 orbit.arrow_forward
- Course Home b Answered: A hydrogen atom is e X + openvellum.ecollege,com/aaua atoyeepuGEI d= 17259666&OpenVellumHMAC=9d7f2cf082a054be921b767ad2532a19#10001 excited from its... | bartleby Review | Constants | Periodic Table Scores bartleby.com eТext Part A (Figure 1) is an energy-level diagram for a simple atom. Study Area What wavelengths appear in the atom's emission spectrum? Document Sharing Express your answers in nanometers. Enter your answers in ascending order separated by commas. User Settings ? Course Tools > = nm Submit Request Answer Figure 1 of 1 Part B What wavelengths appear in the atom's absorption spectrum? Express your answers in nanometers. Enter your answers in ascending order separated by n = 3 E, = 4.0 eV commas. HV ΑΣφ ? n = 2 E, 1.5 eV %3D = nm n = 1 E, 0.0 eV Submit Request Answer P Pearson Copyright © 2022 Pearson Education Inc. All rights reserved. | Terms of Use | Privacy Policy. Permissions | Contact Us | 51°F 11:05 AM Clear 4/28/2022 ... >arrow_forwardASAParrow_forwardDetermine the atomic number of an element if the wavelength of the K^ line of an unknown element is 0.0499 nm. (a) 52 (b) 49 (c) 51 (d) 50arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning