UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 41.43P
(a)
To determine
The probability that the particle in the three-dimensional box in the ground state will be found somewhere between
(b)
To determine
The probability that the particle in the three-dimensional box in the ground state will be found somewhere between
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
To excite an electron in a one-dimensional box from its first excited state to its second excited state requires 23.05 eV.
What is the width of the box? Give your answer in nm.
Chapter 39, Problem 025
The two-dimensional, infinite corral of the figure is square, with edge length L = 160 pm. A square probe is centered at xy
coordinates (0.100L, 0.900L) and has an x width of 3.00 pm and a y width of 3.00 pm. What is the probability of detection
if the electron is in the E, 3 energy state?
Probe
Number
Units
The nucleus of a gold atom has a radius of 7.0 fm. Estimate the kinetic energy of a proton or neutron confined to a gold nucleus.
Hint :Use HEISENBERG PRINCIPLE to find Linear Momentum of Neutron or Proton with uncertainity in position equals to radius 7.0 fm.
Chapter 41 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Similar questions
- Consider hydrogen in the ground state, 100 . (a) Use the derivative to determine the radial position for which the probability density, P(r), is a maximum. (b) Use the integral concept to determine the average radial position. (This is called the expectation value of the electrons radial position.) Express your answers into terms of the Bohr radius, a0. Hint: The expectation value is the just average value, (c) Why are these values different?arrow_forwardAn electron is in a three-dimensional box. The xx- and zz-sides of the box have the same length, but the yy-side has a different length. The two lowest energy levels are 2.18 eVeV and 3.47 eVeV, and the degeneracy of each of these levels (including the degeneracy due to the electron spin) is two. What is the length LY for side of the box? What are the lengths LXLX, LZLZ for sides of the box? What is the energy for the next higher energy state? What are the quantum numbers for the next higher energy state? What is the degeneracy (including the spin degeneracy) for the next higher energy state?arrow_forwarda.Draw the wave function for a particle in a box at the n-3 energy level. b.Draw the probability distribution for a particle in a box at the n-3 energy level. c.A nanoparticle with mass equal to 15 x 10-27 g exists in a 10 nm one-dimensional box. What is the wavelength of radiation emitted when it decays from the n-3 level to the n- 2 level? For a 1 nm box?arrow_forward
- I 4. da 0, Use the WKB approximation to determine the minimum value that Vo must have in order for this potential to allow for a bound state.arrow_forwardConsider an electron in the first excited state of a one-dimensional infinite square well of length L=1A°. Calculate the force on either wall during an impact by the electron. Answer Choices: a. 0354 CN 6. 0.245 L c. 0.121μN d. 0.482 ANarrow_forward3. a) According to the spherical shell model, predict J" for the ground state and first excitation of 'Be, ¹70 and 2¹Ne. b) Explain pros and cons of the shell model based on a harmonic oscillator potential of the type: Vo = 1/2 kr².arrow_forward
- A particle in a box of length L a has E1 = 2 eV. The same particle in a box of length L b has E2 = 50 eV. What is the ratio L a/L b?arrow_forwardA rectangular corral of widths Lx =L and Ly =2L contains seven electrons. What multiple of h2/8mL2 gives the energy of the ground state of this system? Assume that theelectrons do not interact with one another, and do not neglect spin.arrow_forwardPlease only type answerarrow_forward
- While studying the spectrum of a gas cloud in space, an astronomer magnifies a spectral linet hat results from a transition from a p state to an s state. She finds that the line at 575.050 nm has actually split into three lines, with adjacent lines 4.60 * 10^-2 nm apart, indicating that the gas is in an external magnetic field. Ignore effects due to electron spin. What is the strength of the external magnetic field?arrow_forwardTwo identical non-interacting particles of rest energy 0.1973 MeV are trapped in the same infinitely deep one- dimensional square well of width 0.625 µm. If the total energy of the two-particle state is 0.31568 ueV, write down the two-particle wave function in each of the following cases: a, the particles are spinless; b. the particles are electrons and the spin of the state is S = 0; c. the particles are electrons and the spin of the state is s = 1; d. When the Coulomb repulsion between the electrons is taken into account in (b) and (c), which spin state will have the lower energy?arrow_forward6. An electron in hydrogen atom is in initial state p(r, 0) = A(2µ100 + ¡Þ210 + 4Þ21–1 – 2i4211) where ynim are the eigenfunctions of the hydrogen atom a. Determine the constant A b. What is the probability of finding the electron in the first excited state? c. Write the state p(r, t) at time t, using energy eigenvalues as En = d. Find the expectation value of L in the state (r,t e. Find the expectation values of Lx and Ly in the state (r, t f. If measurement of L, led to the value -ħ what will be results of measurement of energy and the square of total orbital momentum immediately afterwards and what are their probabilities? hw n2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College