UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 41.44P
(a)
To determine
To show: For the potential
(b)
To determine
The ground level and first-excited level energies of the three-dimensional isotropic oscillator.
(c)
To determine
To show: There is only one state for the ground level but three states for the first excited level.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle of mass m is under the central force created by the potential energy U(r)=A*r (A>0). The angular momentum of the particle is L (L is not equal to zero).
Find the minimum energy E0 (m, A, L).
Hint is given in the figure
The energy E of a system of three independent
harmonic oscillators is given by
1
E = (Nx + ½)ħw + (ny + ½ )ħw + (nz + 1⁄)ħw.
2
(20.49)
Show that the partition function Z is given by
Z = ZSHO,
(20.50)
where ZSHO is the partition function of a simple
harmonic oscillator given in eqn 20.3. Hence show
that the Helmholtz function is given by
3
F = = ħw + 3k³Tln(1 – e¯ßhw), (20.51)
and that the heat capacity tends to 3kB at high
temperature.
is this right?
Chapter 41 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Similar questions
- Harmonic oscillator eigenstates have the general form 1 μω ,1/4 μω AG)(√(-) n ħ In this formula, which part determines the number of nodes in the harmonic oscillator state? = y (x) 1 √(™ ћn 2"n! Holev 1/4 μω 1 2"n! exp(-1022²) 2ħ μω ħ 2"n! exp μω χ 2ħ 2arrow_forward(2nx sin \1.50. 2nz Consider the case of a 3-dimensional particle-in-a-box. Given: 4 = sin(ny) sin 2.00. What is the energy of the system? O 6h?/8m O 4h²/8m O 3h2/8m O none are correctarrow_forwardI need the answer as soon as possiblearrow_forward
- Given: R is the midpoint of QS, ZRPQ =ZRTS prove: APQR = ATSR P.arrow_forward(a) Find the mass density of a proton, modeling it as a solid sphere of radius 1.00 x 10-15 m. (b) What If? Consider a classical model of an electron as a uniform solid sphere with the same density as the proton. Find its radius. (c) Imagine that this electron possesses spin angular momentum Iω = h/2 because of classical rotation about the z axis. Determine the speed of a point on the equator of the electron. (d) State how this speed compares with the speed of light.arrow_forwardThe position as a function of time x(t) of a simple harmonic oscillator is given by: x(t) = A cos(wt) %3D where A is the amplitude and w is the angular velocity. a) What is the range of possible values of x permitted for this oscillator? b) Derive the probability density function of p(x) for this oscillator. c) Validate that p(x) is normalized.arrow_forward
- The population density, Ni, corresponding to a discrete energy level, E₁, for a group of N like particles in Local Thermodynamic Equilibrium (LTE) state can be described by the following equation N₂ 9₁c-Ei/(KRT) Z(T) N i) Define the remaining quantities or constants in the above equation. ii) = Produce an expression for Z(T) as a function of T. In order to calculate Z(T) for a particular atomic gas such as argon, what atomic data or information needs to be made available before the calculation is carried out? iii) To uniquely describe the population density distribution corresponding to different discrete energy levels of a diatomic molecular gas such as CO in equilibrium, how many Z(T) functions need to be used and why?arrow_forwardQ # 01: Consider a ball of 100g dropped with zero velocity from the height of 2m. Estimate its total energy in eV units. Using the energy conservation, find out the velocity as a function of position of the ball. Sketch its phase trajectory. Calculate the time it takes to reach the ground. Let’s assume that it is bounced back with no loss in its total energy.Will it reachthe same height? Make an analytical argument. What if the collision with the ground is not elastic and it loses some of its energy (which energy?).The ball will eventually come to rest after bouncing few times. Sketch the phase trajectory for the whole duration. What is the range of total energy of this system? Can the energy of this systemassume discrete values? Explain mathematically.arrow_forwardCalculate Z for a single oscillator in an Einstein solid at a temperature T=4TE=4ϵ/kBT=4 TE=4 ϵ/kB . The value of Z isarrow_forward
- (a) Calculate: (i) the energy spacing AE between the ground state and the first excited state of the hydrogen atom; (ii) and the ratio AE/E between the spacing and the ground state energy. (b) Consider now a macroscopic system: a simple pendulum which consists of a 5 g mass attached to a 2 m long, massless and inextensible string. Calculate (i) the total energy E1 of the pendulum when the string makes an angle of 60° with the vertical; (ii) the frequeney of the pendulum's small oscillations and the energy AE of one quantum; and (iii) the ratio AE/E1. (c) Examine the sizes of the ratio AE/E1 calculated in parts (a) and (b) and comment on the importance of the quantum effects for the hydrogen atom and the pendulum.arrow_forward(a) Calculate the energy separations in units of joules and kilojoules per mole, respectively, between thelevels n = 2 and n = 1 of an electron in a one-dimensional box of length 1.0 nm. (b) Calculate the zero point energy of a harmonic oscillator consisting of a particle of mass 2.33 × 10−26 kgwith a force constant 155 N m−1.arrow_forwardA simple harmonic oscillator is in the ground state with A-², where A=1/41/4 jm-1/2 and a = 1/2 m2, What is a (x²) and Ax? (Hint: [ [_xe-x²³ dx=0 and [_x²a-b²³dx==√m/6²³ ) Ax- μm m2 umarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning