UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 41.39P
To determine
The energy of the highest level occupied by an electron when
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We are going to use Heisenberg's uncertainty principle to estimate the ground-
state energy of hydrogen. In our model, the electron is confined in a one-
dimensional well with a length about the size of hydrogen, so that Ax = 0.0529
nm. Estimate Ap, and then assume that the ground-state energy is
roughly Ap2/2me. (Give your answer in Joules or electron-volts.)
An electron is trapped in a one-dimensional region
of length 1.00 x 10-10 m (a typical atomic diameter).
(a) Find the energies of the ground state and first two
excited states. (b) How much energy must be supplied
to excite the electron from the ground state to the sec-
ond excited state? (c) From the second excited state, the
electron drops down to the first excited state. How much
energy is released in this process?
A nanoparticle containing 6 atoms can be modeled approximately as an Einstein solid of 18 independent oscillators. The evenly spaced energy levels of each oscillator are 5e-21 J apart. Use k = 1.4e-23 J/K.
When the nanoparticle's energy is in the range 5(5e-21) J to 9(5e-21) J, what is the approximate heat capacity per atom?
Chapter 41 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 41.1 - Prob. 41.1TYUCh. 41.2 - Prob. 41.2TYUCh. 41.3 - Prob. 41.3TYUCh. 41.4 - In this section we assumed that the magnetic field...Ch. 41.5 - In which of the following situations is the...Ch. 41.6 - Prob. 41.6TYUCh. 41.7 - Prob. 41.7TYUCh. 41.8 - Prob. 41.8TYUCh. 41 - Prob. 41.1DQCh. 41 - Prob. 41.2DQ
Ch. 41 - Prob. 41.3DQCh. 41 - Prob. 41.4DQCh. 41 - Prob. 41.5DQCh. 41 - Prob. 41.6DQCh. 41 - Prob. 41.7DQCh. 41 - In the ground state of the helium atom one...Ch. 41 - Prob. 41.9DQCh. 41 - Prob. 41.10DQCh. 41 - Prob. 41.11DQCh. 41 - Prob. 41.12DQCh. 41 - Prob. 41.13DQCh. 41 - Prob. 41.14DQCh. 41 - Prob. 41.15DQCh. 41 - Prob. 41.16DQCh. 41 - Prob. 41.17DQCh. 41 - Prob. 41.18DQCh. 41 - Prob. 41.19DQCh. 41 - Prob. 41.20DQCh. 41 - Prob. 41.21DQCh. 41 - Prob. 41.22DQCh. 41 - Prob. 41.23DQCh. 41 - Prob. 41.1ECh. 41 - Prob. 41.2ECh. 41 - Prob. 41.3ECh. 41 - Prob. 41.4ECh. 41 - Prob. 41.5ECh. 41 - Prob. 41.6ECh. 41 - Prob. 41.7ECh. 41 - Prob. 41.8ECh. 41 - Prob. 41.9ECh. 41 - Prob. 41.10ECh. 41 - Prob. 41.11ECh. 41 - Prob. 41.12ECh. 41 - Prob. 41.13ECh. 41 - Prob. 41.14ECh. 41 - Prob. 41.15ECh. 41 - Prob. 41.16ECh. 41 - Prob. 41.17ECh. 41 - Prob. 41.18ECh. 41 - A hydrogen atom in a 3p state is placed in a...Ch. 41 - Prob. 41.20ECh. 41 - Prob. 41.21ECh. 41 - Prob. 41.22ECh. 41 - Prob. 41.23ECh. 41 - Prob. 41.24ECh. 41 - Prob. 41.25ECh. 41 - Prob. 41.26ECh. 41 - Prob. 41.27ECh. 41 - Prob. 41.28ECh. 41 - Prob. 41.29ECh. 41 - (a) Write out the ground-state electron...Ch. 41 - Prob. 41.31ECh. 41 - Prob. 41.32ECh. 41 - Prob. 41.33ECh. 41 - Prob. 41.34ECh. 41 - Prob. 41.35ECh. 41 - Prob. 41.36ECh. 41 - Prob. 41.37ECh. 41 - Prob. 41.38ECh. 41 - Prob. 41.39PCh. 41 - Prob. 41.40PCh. 41 - Prob. 41.41PCh. 41 - Prob. 41.42PCh. 41 - Prob. 41.43PCh. 41 - Prob. 41.44PCh. 41 - Prob. 41.45PCh. 41 - Prob. 41.46PCh. 41 - Prob. 41.47PCh. 41 - Prob. 41.48PCh. 41 - Prob. 41.49PCh. 41 - Prob. 41.50PCh. 41 - Prob. 41.51PCh. 41 - Prob. 41.52PCh. 41 - Prob. 41.53PCh. 41 - Prob. 41.54PCh. 41 - Prob. 41.55PCh. 41 - Prob. 41.56PCh. 41 - Prob. 41.57PCh. 41 - Effective Magnetic Field. An electron in a...Ch. 41 - Prob. 41.59PCh. 41 - Prob. 41.60PCh. 41 - Prob. 41.61PCh. 41 - Prob. 41.62PCh. 41 - Prob. 41.63PCh. 41 - Prob. 41.64PCh. 41 - Prob. 41.65PCh. 41 - Prob. 41.66PCh. 41 - Prob. 41.67PCh. 41 - Prob. 41.68CPCh. 41 - Prob. 41.69CPCh. 41 - Prob. 41.70PPCh. 41 - Prob. 41.71PPCh. 41 - Prob. 41.72PPCh. 41 - Prob. 41.73PP
Knowledge Booster
Similar questions
- What is the probability that the electron with the lowest energy in a box of 2.0 nm is between x = 0.2 and x = 1 nm?arrow_forward(a)What are the energies of the first three energy levels of an electron confined in a one-dimensional box of wavelength 0.70nm. Give your answer in electron volts (eV) (b) How much energy must the electron lose to move from the n=2 energy level to the n=1 energy level? Again, give your answer in eV. (c) Suppose that an electron can move from the n=2 level to n=1 level by emitting a photon of light. If energy is conserved, what must the photon wavelength be? Give your answer in nanometersarrow_forwardWe can approximate an electron moving in a nanowire (a small, thin wire) as a one-dimensional infi nite square-well potential. Let the wire be 2.0 μm long. The nanowire is cooled to a temperature of 13 K, and we assume the electron’s average kinetic energy is that of gas molecules at this temperature ( 3kT/2). (a) What are the three lowest possible energy levels of the electrons? (b) What is the approximate quantum number of electrons moving in the wire?arrow_forward
- For a particle in a three-dimensional cubical box, what is the degeneracy (number of different quantum states with the same energy) of the energy levels (a) 3p2h2/2mL2 and (b) 9p2h2/2mL2?arrow_forwardAn electron is trapped in a square well 0.50 nm across (roughly five times a typical atomic diameter). (a) Find the ground-level energy E1-IDW if the well is infinitely deep. (b) Find the energy levels if the actual well depth U0 is six times the ground-level energy found in part (a). (c) Find the wavelength of the photon emitted when the electron makes a transition from the n = 2 level to the n = 1 level. In what region of the electromagnetic spectrum does the photon wavelength lie? (d) If the electron is in the n = 1 (ground) level and absorbs a photon, what is the minimum photon energy that will free the electron from the well? In what region of the spectrum does the wavelength of this photon lie?arrow_forwardSolid metals can be modeled as a set of uncoupled harmonic oscillators of the same frequency with energy levels given by En = ħwn n = 0, 1, 2,... where the zero-point energy (the lowest energy state) of each oscillator has been adjusted to zero for simplicity. In this model, the harmonic oscillators represent the motions of the metal atoms relative to one another. The frequency of these oscillators is low so that ħw = = 224 KB and the system vibrational partition function is given by 3N Z ² = la₁ - (1 1 e-0/T). (a) If the system contains one mole of atoms, find the average energy (in J) of this system at T= 172 K. (You can use = BkB.) T (b) What is the absolute entropy (in J/K) for this system? You can use either the Gibbs expression for S, or the system partition function to make this evaluation (they are equivalent, as your reading assignment indicates).arrow_forward
- A particle is in the n = 9 excited state of a quantum simple harmonic oscillator well. A photon with a frequency of 3.95 x 1015 Hz is emitted as the particle moves to the n = 7 excited state. What is the minimum photon frequency required for this particle to make a quantum jump from the ground state of this well to the n = 8 excited state? (Give your answer in Hz.)arrow_forwardThe smallest observed frequency for a transition between states of an electron in a one-dimensional box is 3.0 X 10¹3 s¹. What is the length of the box?arrow_forwardA particle of mass m is confined to a 3-dimensional box that has sides Lx,=L Ly=2L, and Lz=3L. a) Determine the sets of quantum numbers n_x, n_y, and n_z that correspond to the lowest 10 energy levels of this box.arrow_forward
- An electron in an infinite potential well (a box) makes a transition from the n = 3 level to the ground state and, in doing so, emits a photon with a wavelength of 20.9 nm. (a) How wide is this well? (b) What wavelength of the photon would it take to excite the electron from its original level to the next higher level?arrow_forwardQuestion 1. An electron with a total energy E moves in a 1-D region 1. At x=0, there is a potential energy step of height V. (as shown in the figure 2). Where the wave functions 41(x) = Aelax+ Be-iax, 42(x) = Ce-x/b+ Dex/b 1) H) Find the real numbers a and b in terms of E and Vo. State whether the electron energy is greater than or less than VO and why. Incident particles Region I V(x) Vo x=0 Region II Figure 2. Step potential functionarrow_forwardA proton is in a one-dimensional box of width 7.8 pm (1 pm = 1 x 10-¹2 m). The energy of the proton is equal to the absolute value of the ground state of a hydrogen atom. What state is the proton in?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning