Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 36P
To determine
Find the Fermi energy of the neutron star.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An atom’s nucleus is a collection of fermions— protons and neutrons.
(a) In calculating the Fermi energy in a nucleus, the protons and neutrons must be considered separately. Why?
(b) Find the Fermi energy of (i) the protons and (ii) the neutrons in a uranium nucleus, which has a radius of 7.4 x 10-15 m and contains 92 protons and 146 neutrons.
[#168] Such stuff as dreams are made of.
How much of you is not vacuum? Outside of the nucleus, an atom contains mostly empty space. Estimate the fraction of the volume of an atom that is occupied by the nucleus. Assume that a typical atom has a linear dimension of about 0.1 nm and that a typical nuclear dimension is about 1 fm. (Note that this problem introduces some new prefixes: n is nano or 10^{-9}10−9, p is pico or 10^{-12}10−12, f is femto or 10^{-15}10−15).
Give your answer as a power of ten. For example, enter: 10^18, or 10^-3 (for 10^{18}1018 or 10^{-3}10−3).
Asaplike
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 40.4 - Determine the three lowest rotational energy...Ch. 40.6 - Prob. 1BECh. 40.6 - Prob. 1CECh. 40.8 - Prob. 1DECh. 40 - What type of bond would you expect for (a) the N2...Ch. 40 - Describe how the molecule CaCl2 could be formed.Ch. 40 - Does the H2 molecule have a permanent dipole...Ch. 40 - Although the molecule H3 is not stable, the ion...Ch. 40 - The energy of a molecule can be divided into four...Ch. 40 - Would you expect the molecule H2+ to be stable? If...
Ch. 40 - Explain why the carbon atom (Z = 6) usually forms...Ch. 40 - Prob. 8QCh. 40 - Prob. 9QCh. 40 - Prob. 10QCh. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 15QCh. 40 - Prob. 16QCh. 40 - Prob. 17QCh. 40 - Prob. 18QCh. 40 - Prob. 19QCh. 40 - Prob. 20QCh. 40 - Prob. 21QCh. 40 - Prob. 22QCh. 40 - Prob. 23QCh. 40 - Prob. 1PCh. 40 - (II) The measured binding energy of KCl is 4.43eV....Ch. 40 - (II) Estimate the binding energy of the H2...Ch. 40 - (II) The equilibrium distance r0 between two atoms...Ch. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - (III) (a) Apply reasoning similar to that in the...Ch. 40 - (I) Show that the quantity 2/I has units of...Ch. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 13PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - (II) Calculate the bond length for the NaCl...Ch. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62GPCh. 40 - Prob. 63GPCh. 40 - Prob. 64GPCh. 40 - Prob. 65GPCh. 40 - Prob. 66GPCh. 40 - Prob. 67GPCh. 40 - Prob. 68GPCh. 40 - Prob. 69GPCh. 40 - Prob. 70GPCh. 40 - Prob. 71GPCh. 40 - Prob. 72GPCh. 40 - Prob. 73GPCh. 40 - Prob. 74GPCh. 40 - Prob. 75GPCh. 40 - Prob. 76GPCh. 40 - Prob. 77GPCh. 40 - Prob. 78GPCh. 40 - Prob. 79GPCh. 40 - Prob. 80GPCh. 40 - Prob. 81GPCh. 40 - Prob. 82GPCh. 40 - Prob. 83GPCh. 40 - Prob. 84GPCh. 40 - Prob. 85GPCh. 40 - Prob. 86GPCh. 40 - Prob. 87GPCh. 40 - Prob. 88GPCh. 40 - Prob. 89GP
Knowledge Booster
Similar questions
- .In sodium there are about 2.6 x 1028 conduction electrons per cubic metre which behave as a free electron gas. Fronm these facts estimate the Fermi energy of the gas and an approximate value of the molar electronic heat capacity at 300K.arrow_forward(1) for A, C & D 3RD SIGNIICANCE BUT FOR B, EXACT NO TOLERANCE. ANSWER ALSO E PLSarrow_forward10-18. Consider a system in which the density of states of the electrons f(ɛ) is f(E) = constant = D ɛ>0 ɛ<0 Calculate the Fermi energy for this system; determine the condition for the system being highly degenerate; and then show that the heat capacity is proportional to T for the highly degenerate case.arrow_forward
- O:22) Use fermi approximation to determine the number of softballs that can fit in a 1 meter cube. Calculate the free space in a 1 meter cube box that is filled with softballs. State all assumptions.arrow_forwardNonearrow_forwardStars similar to our sun eventually become white dwarfs, in which the hydrogen and helium have fused to form carbon and oxygen. The star has collapsed to a much smaller radius, which is why it is described as a “dwarf.” The electrons are not bound to the nuclei and form a degenerate Fermi gas within the white dwarf. Consider a white dwarf with a mass equal to the sun’s mass (1.99 x 1030 kg) but a radius of only 6.96 x 106 m, which is just 1% of the sun’s present radius. (a) If the white dwarf consists of equal parts carbon and oxygen, how many electrons are present? (b) What is the number density of electrons? (c) Find the Fermi energy of the electrons (in units of eV) and comment on the result.arrow_forward
- (1-8) Find the diffusion coefficient of holes and electrons for Germanium at 300 k. The mobilities in cm2/v-s at 300 k for electrons and holes are respectively 3600 and 1700. Density of carriers is 2.5x 10/m .Boltzmann constant K=l.38 x 10. carrierarrow_forward(b) Copper crystallises as FCC (face centred cubic). Given that the atomic radius and density of a given copper sample are 1.28 x 1010 m and 8.98 x 10' kg/m' respectively, carry out the following: Calculate the mass of the copper sample. T'ake Avogadro's number, NA = 6.023 x 1023 atoms/mole. (i) (ii) If the interatomic planar spacing, d, in the sample above is 2.96 x 1010 m, determine the angle at which the first Bragg reflection will occur from the (111) plane if x-radiation of wavelength 1.52 x 10-10 m is used for the analysis. (c) Give two uses of pure copper and two commercial applications of copper alloys.arrow_forward3. (a) Use the two-dimensional density of states expression P(e) = Am/2nh² to obtain the chemical potential m of a non-interacting two-dimensional Fermi gas of N femions occupying an area A at temperature T = 0 K. (b) For T > 0 K, show that the chemical potential is given to a good approximation by H= 8p- kgTln (1+ exp (-)).arrow_forward
- Why doesn’t the total energy of a collection of fermions approach zero as the temperature approaches zero?arrow_forward(c) Obtain expressions for the Fermi energy, the total energy and the density of states for a free electron gas in one dimension. Show the variation of the density of states with energy.arrow_forwardAt what temperature, in terms of Tc, is the critical field of a superconductor one-half its value at T = 0 K?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax