Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 79GP
To determine
Find the size of the energy gap.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The plot of the E field with respect to x in a metal semiconductor junction at 300K is shown in the figure. The semiconductor is Si and E(0)=-2x10* V/cm and
xo-0.2x10 cm. What is the semiconductor type and built in potential value.
レEo)
O a. n type 200 mV
O b. n type 800 mv
Oc p type 400 mV
Od. p type 200 mV
O e. n type 400 mV
Of.
p type 800 mv
Most solar cells are semiconductor-based. If most solar radiation has a wavelength of less than 1m, what should the band gap of the solar cell material be? Silicon has a band gap of 1.14 eV. Is silicon a suitable solar cell material?
The longest wavelength of radiation absorbed by a certain semiconductor is 0.512 μm. Calculate the energy gap for this semiconductor.
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 40.4 - Determine the three lowest rotational energy...Ch. 40.6 - Prob. 1BECh. 40.6 - Prob. 1CECh. 40.8 - Prob. 1DECh. 40 - What type of bond would you expect for (a) the N2...Ch. 40 - Describe how the molecule CaCl2 could be formed.Ch. 40 - Does the H2 molecule have a permanent dipole...Ch. 40 - Although the molecule H3 is not stable, the ion...Ch. 40 - The energy of a molecule can be divided into four...Ch. 40 - Would you expect the molecule H2+ to be stable? If...
Ch. 40 - Explain why the carbon atom (Z = 6) usually forms...Ch. 40 - Prob. 8QCh. 40 - Prob. 9QCh. 40 - Prob. 10QCh. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 15QCh. 40 - Prob. 16QCh. 40 - Prob. 17QCh. 40 - Prob. 18QCh. 40 - Prob. 19QCh. 40 - Prob. 20QCh. 40 - Prob. 21QCh. 40 - Prob. 22QCh. 40 - Prob. 23QCh. 40 - Prob. 1PCh. 40 - (II) The measured binding energy of KCl is 4.43eV....Ch. 40 - (II) Estimate the binding energy of the H2...Ch. 40 - (II) The equilibrium distance r0 between two atoms...Ch. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - (III) (a) Apply reasoning similar to that in the...Ch. 40 - (I) Show that the quantity 2/I has units of...Ch. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 13PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - (II) Calculate the bond length for the NaCl...Ch. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62GPCh. 40 - Prob. 63GPCh. 40 - Prob. 64GPCh. 40 - Prob. 65GPCh. 40 - Prob. 66GPCh. 40 - Prob. 67GPCh. 40 - Prob. 68GPCh. 40 - Prob. 69GPCh. 40 - Prob. 70GPCh. 40 - Prob. 71GPCh. 40 - Prob. 72GPCh. 40 - Prob. 73GPCh. 40 - Prob. 74GPCh. 40 - Prob. 75GPCh. 40 - Prob. 76GPCh. 40 - Prob. 77GPCh. 40 - Prob. 78GPCh. 40 - Prob. 79GPCh. 40 - Prob. 80GPCh. 40 - Prob. 81GPCh. 40 - Prob. 82GPCh. 40 - Prob. 83GPCh. 40 - Prob. 84GPCh. 40 - Prob. 85GPCh. 40 - Prob. 86GPCh. 40 - Prob. 87GPCh. 40 - Prob. 88GPCh. 40 - Prob. 89GP
Knowledge Booster
Similar questions
- The measured density of a KCl crystal is 1.984 g/cm3. What is the equilibrium separation distance of K+ and Cl- ions?arrow_forward2arrow_forwardWhen an electron in the compound semiconductor AlAs makes a transition from the conduction band to the valence band, a 574-nm photon is emitted. What is the size of the band gap?arrow_forward
- The electron number density in a semiconductor varies from 1020 m³ to 10¹2 m³ linearly over a distance of 4 µm. Determine the electron diffusion current and electric field at the midpoint if no current flows, He = 0.135 m²V-¹s¹ and T = 300 K.arrow_forwardA20. An intrinsic silicon semiconductor is uniformly doped with acceptors to a level of 2x1017 cm-³. At room temperature, the electron concentration in this semiconductor is found to be 5x10² cm-3. What is the intrinsic carrier concentration of this semiconductor at room temperature and describe qualitatively how would the electron concentration change if the temperature increased slightly?arrow_forwardIn a certain semiconductor, the valence band can be approximated by the function E(k) = Eo ak² and the conduction band can be described by the function E(k)= E₁ + 3k². Here E(k) is the electron energy and k is the wavevector. Plot E(k) for the two bands. What is the bandgap of this semiconductor? Is this a direct or indirect bandgap semiconductor?arrow_forward
- . Mobility of electrons in a semiconductor is defined as the ratio of their drift velocity to the applied electric field. If for an n-type semiconductor, the density of electrons is 10¹⁹ m-³ and their mobility is 1.6 m² (V-s), then the resistivity of the semiconductor 2 semiconductor (since, it is an n-type contribution of holes is ignored) is close toarrow_forwardJ 6arrow_forwardQuestion 2: а. Find the conductivity of an intrinsic semiconductor which have the following values: µe = (0 + 0.25) m²/V.s; µp = (0+ 0.035) m²/V.s; n¡ = (0 + 1.55) × 10*m³.arrow_forward
- The conductivity of a semiconductor is 250 S/m at 20 °C and 1100 S/m at 100 °C. Prove that the band gap of this semiconductor is 0.263 eV.arrow_forwardA sample of a semiconductor (A) is measured at room temperature The Hall coefficient of (A) is 4 x 10^-(4) m^3 coloumb^(-1) at room temperature. At room temperature, what is the carrier concentration in sample A?arrow_forwardSuppose you need to design an n-type silicon semiconductor with a conductivity of 160 (N ·m)-1 at 300K. The atomic weight of silicon is 28.09 g/mol, and the density is 2.33g/cm³. The mobility of electrons/holes in silicon at different doping concentrations under different temperature is shown in the following figure. 0.1 102 102 10, 10 0.01 0.01 A kgou aoarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax