Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 63GP
(a)
To determine
Find the temperature at which the translational kinetic energy will be on the order of bond energy for a covalent bond.
(b)
To determine
Find the temperature at which the translational kinetic energy will be on the order of bond energy for a weak hydrogen bond.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The bond length in the BrF molecule is 178 pm and the measured dipole moment is 1.29 D (debyes). What is the magnitude of the negative charge (in units of the electronic charge e) on F in BrF? (1 debye = 3.34 × 10−30 coulomb-meters; electronic charge = e = 1.6 × 10−19 coulombs). A. 0.15 B. 0.24 C. 0.33 D. 1.00 E. 1.6 × 10−19
(b)
Describe the nature and origin of various forces existing between the atoms of a crystal.
Explain the formation of a stable bond using the potential energy versus interatomic
distance curve.
Assume that the potential energy of two particles in the field of each other is given by
U(R) = - R
where A and B are constants.
R9
(i) Show that the particles form a stable compound for
R= R. = (9B/A)/8
(R, is equilibrium separation)
i) Show that for stable configuration, the energy of attraction is nine times the energy
of repulsion.
8A
(iii) Show that the potential energy of the system under stable configuration is
9Re
Hcp structure . Show that the c/a ratio for an ideal hexagonal close- packed structure is (8/3)^1/2 = 1.633 . if c/a is significantly larger than this value , the crystal structure may be thought of as composed of planes of closely packed atoms, the planes being loosely stacked.
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 40.4 - Determine the three lowest rotational energy...Ch. 40.6 - Prob. 1BECh. 40.6 - Prob. 1CECh. 40.8 - Prob. 1DECh. 40 - What type of bond would you expect for (a) the N2...Ch. 40 - Describe how the molecule CaCl2 could be formed.Ch. 40 - Does the H2 molecule have a permanent dipole...Ch. 40 - Although the molecule H3 is not stable, the ion...Ch. 40 - The energy of a molecule can be divided into four...Ch. 40 - Would you expect the molecule H2+ to be stable? If...
Ch. 40 - Explain why the carbon atom (Z = 6) usually forms...Ch. 40 - Prob. 8QCh. 40 - Prob. 9QCh. 40 - Prob. 10QCh. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 15QCh. 40 - Prob. 16QCh. 40 - Prob. 17QCh. 40 - Prob. 18QCh. 40 - Prob. 19QCh. 40 - Prob. 20QCh. 40 - Prob. 21QCh. 40 - Prob. 22QCh. 40 - Prob. 23QCh. 40 - Prob. 1PCh. 40 - (II) The measured binding energy of KCl is 4.43eV....Ch. 40 - (II) Estimate the binding energy of the H2...Ch. 40 - (II) The equilibrium distance r0 between two atoms...Ch. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - (III) (a) Apply reasoning similar to that in the...Ch. 40 - (I) Show that the quantity 2/I has units of...Ch. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 13PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - (II) Calculate the bond length for the NaCl...Ch. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62GPCh. 40 - Prob. 63GPCh. 40 - Prob. 64GPCh. 40 - Prob. 65GPCh. 40 - Prob. 66GPCh. 40 - Prob. 67GPCh. 40 - Prob. 68GPCh. 40 - Prob. 69GPCh. 40 - Prob. 70GPCh. 40 - Prob. 71GPCh. 40 - Prob. 72GPCh. 40 - Prob. 73GPCh. 40 - Prob. 74GPCh. 40 - Prob. 75GPCh. 40 - Prob. 76GPCh. 40 - Prob. 77GPCh. 40 - Prob. 78GPCh. 40 - Prob. 79GPCh. 40 - Prob. 80GPCh. 40 - Prob. 81GPCh. 40 - Prob. 82GPCh. 40 - Prob. 83GPCh. 40 - Prob. 84GPCh. 40 - Prob. 85GPCh. 40 - Prob. 86GPCh. 40 - Prob. 87GPCh. 40 - Prob. 88GPCh. 40 - Prob. 89GP
Knowledge Booster
Similar questions
- The measured density of a KCl crystal is 1.984 g/cm3. What is the equilibrium separation distance of K+ and Cl- ions?arrow_forward(a) In an HCl molecule, take the Cl atom to be the isotope 35Cl. The equilibrium separation of the H and Cl atoms is 0.127 46 nm. The atomic mass of the H atom is 1.007 825 u and that of the 35Cl atom is 34.968 853 u. Calculate the longest wavelength in the rotational spectrum of this molecule. (b) What If? Repeat the calculation in part (a), but take the Cl atom to be the isotope 37Cl, which has atomic mass 36.965 903 u. The equilibrium separation distance is the same as in part (a). (c) Naturally occurring chlorine contains approximately three parts of 35Cl to one part of 37Cl. Because of the two different Cl masses, each line in the microwave rotational spectrum of HCl is split into a doublet as shown in Figure P42.11. Calculate the separation in wavelength between the doublet lines for the longest wavelength.arrow_forwardThe measured density of a CsCl crystal is 3.988 g/cm3. What is the equilibrium separate distance of Cs+ and Cl- ions?arrow_forward
- Pls help ASAP. Pls show all work annd circle the final answer.arrow_forwardThe bond length in F2 is 1.417 Å, instead of twice theatomic radius of F, which is 1.28 Å. What can account forthe unexpected length of the F_ F bond?arrow_forwardIn solid KCI the smallest distance between the centers of a. potassium ion and a chloride ion is 314 pm. Calculate the length of the edge of the unit cell and the density of KCI, assuming it has the same structure as sodium chloride.arrow_forward
- Show that the moment of inertia of a diatomic molecule composed of atoms of masses mA and mB and bond length R is equal to meffR2, where meff = mAmB/(mA + mB).arrow_forwardCu Assume that the crystal structure of metallic copper (Cu) results in a density of atoms p = 8.46 × 10²m 3. Each Cu atom in the crystal donates one electron to the conduction band, which leads, for the 3-D Fermi gas, to a densityu of states g(ɛ) = 2 x = ( 2 m ² ) ² 1/2 where m is the effective mass of the conduction electrons. In the low temperature limit (i.c. T = 0 K), find the Fermi energy E, in units of eV. You may assume m* to be equal to the free electron mass marrow_forward(b): the potential energy of a diatomic molecule is given by U = B where A and B are constants and r is the separation A r12 r6 distance between the atoms. For the H2 molecule, take A = 0.124 x 10-120 eV. m² and B = 1.488 × 10-60 eV . m°. Find the separation distance at which the energy of the molecule is a %3D minimum.arrow_forward
- Consider a molecule that can be in one of two different conformation states A or B. These states are two different arrangements of the atoms: e.g., in state B, one part of the molecule could be rotated about a bond with respect to the rest of the molecule. Assume the energies of states A and B are 4e-21 and 8e-21 J respectively. At room temperature, T = 298 K, what is the relative likelihood of the molecule being found in state B vs state A? 37.8 Submit Answer Incorrect. Tries 2/3 Previous Tries If the temperature decreases by 25 K to T = 273 K, what is the relative likelihood of the molecule being found in state B vs state A? 34.58 Submit Answer Incorrect. Tries 1/3 Previous Tries If the temperature increases by 100 K to T = 398 K, what is the relative likelihood of the molecule being found in state B vs state A? Submit Answer Tries 0/3arrow_forwardSilicon atoms with a concentration of 7x 1010 cm3 are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T = 300 K: N. = 4.7 x 1017 cm-3 and N, = 7 x 101cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The donor concentration?arrow_forwardN 2 has a molecular weight of 28.02 g/mol a bit larger than that of a Ne atom, 20.18 g/mol. (a) At a particular temperature, Z trans= 1.90 x 10 26 for Ne in a specific container. What is the translational partition function for a N2 molecule in this container at the same temperature? (b) At 100 K, the rotational partition function for N2is found to be 17.39. What would you expect it to be at 500 K?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax