Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 27P
To determine
Find the number of states available for the electron from
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3) The Seebeck voltage for Copper Constantan (Cn) thermocouple is given by the linear relation
V = a + bT, where T is the absolute temperature of the hot junction, and a and b are constants.
For Cu : a =
Calculate the thermoelectric power when the hot junction is at 100 C.
0.6 mV, and b = 0.008 mV/K.
For Cn : a = -20 mV, and b
-0.056 mV/K.
%3D
2) In one of the most recent silicon industry achievements of 2021, a single transistor takes up a
rectangular area on a microchip that measures 10[nm] by 2O[nm]. The early microchips in the
1970's had rectangular transistors that each measured approximátely 20[um] by 40[µm]. How
manv of the new 2021 transistors could fit inside the same area of a single 1970 transistor?
A) 400
B) 4000
C) 40,000
D) 400,000
É 4,000,000
1) A Si p-n-p transistor has the following properties at room temperature:
Tn = Tp
0.1 us
NE
1019 сті
Emitter concentration
— 10 ст2/s
-3
Dn = Dp
NB 3D 1016 ст
Base concentration
Nc
1019 ст
-3
= Collector concentration
WE
3 µm
Emitter width
W
1.5 um
Metallurgical base width, i.e. the distance between base-emitter junction and
base-collector junction
A = 10-5 cm² = Cross-sectional area
If VCB = 0 V and VEB = 0.6 V, calculate the following:
ЕВ
a) Neutral base width (WB)
b) Base transport factor
c) Emitter injection efficiency
d)
a, ß and y.
e) Ic, Ig and Ig.
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 40.4 - Determine the three lowest rotational energy...Ch. 40.6 - Prob. 1BECh. 40.6 - Prob. 1CECh. 40.8 - Prob. 1DECh. 40 - What type of bond would you expect for (a) the N2...Ch. 40 - Describe how the molecule CaCl2 could be formed.Ch. 40 - Does the H2 molecule have a permanent dipole...Ch. 40 - Although the molecule H3 is not stable, the ion...Ch. 40 - The energy of a molecule can be divided into four...Ch. 40 - Would you expect the molecule H2+ to be stable? If...
Ch. 40 - Explain why the carbon atom (Z = 6) usually forms...Ch. 40 - Prob. 8QCh. 40 - Prob. 9QCh. 40 - Prob. 10QCh. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 15QCh. 40 - Prob. 16QCh. 40 - Prob. 17QCh. 40 - Prob. 18QCh. 40 - Prob. 19QCh. 40 - Prob. 20QCh. 40 - Prob. 21QCh. 40 - Prob. 22QCh. 40 - Prob. 23QCh. 40 - Prob. 1PCh. 40 - (II) The measured binding energy of KCl is 4.43eV....Ch. 40 - (II) Estimate the binding energy of the H2...Ch. 40 - (II) The equilibrium distance r0 between two atoms...Ch. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - (III) (a) Apply reasoning similar to that in the...Ch. 40 - (I) Show that the quantity 2/I has units of...Ch. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 13PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - (II) Calculate the bond length for the NaCl...Ch. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62GPCh. 40 - Prob. 63GPCh. 40 - Prob. 64GPCh. 40 - Prob. 65GPCh. 40 - Prob. 66GPCh. 40 - Prob. 67GPCh. 40 - Prob. 68GPCh. 40 - Prob. 69GPCh. 40 - Prob. 70GPCh. 40 - Prob. 71GPCh. 40 - Prob. 72GPCh. 40 - Prob. 73GPCh. 40 - Prob. 74GPCh. 40 - Prob. 75GPCh. 40 - Prob. 76GPCh. 40 - Prob. 77GPCh. 40 - Prob. 78GPCh. 40 - Prob. 79GPCh. 40 - Prob. 80GPCh. 40 - Prob. 81GPCh. 40 - Prob. 82GPCh. 40 - Prob. 83GPCh. 40 - Prob. 84GPCh. 40 - Prob. 85GPCh. 40 - Prob. 86GPCh. 40 - Prob. 87GPCh. 40 - Prob. 88GPCh. 40 - Prob. 89GP
Knowledge Booster
Similar questions
- At what temperature, in terms of Tc, is the critical field of a superconductor one-half its value at T = 0 K?arrow_forwardPhysics . Determine the number of conduction electrons/m3 in pure silicon AND silicon’s conductivity σfora) T = 10 Kb) T = 100 Kc) T = 1000 Kd) Conceptually, why does Si’s conductivity get better with increasing temperature?(For intrinsic Si, me* = 1.08me, μe = 1400cm2/V∙s, mh* = 0.60me, μh = 450cm2/V∙s, at. wt. = 28.085g/mol, density = 2.329 g/cm3).arrow_forward4--N MOSFETs are used in the given circuit. Q1, Q2,….. The parameters of Qn MOS transistors are Vt=1V, γ=0, λ=0,μnCox=200μA/V2 and (W/L)1= (W/L) 2=….=(W/L)n=20 a) VGS=?, ID=?, gm=? b) Find the input and output impedance. c) Find the voltage gain.SOLVE IT IN DETAIL.arrow_forward
- (c) Calculate the Fermi energy of silver from the data given below: atom. Density of Silver = 10.5 gm/cm³ atomic weight = 108 h = 6.62×10-34 Joule - sec m = 9.1×10-³1 Kg. Avogadro's number =6.02×10-21 atoms/gm-arrow_forwardCalculatea) the drift mobility b) the mean scattering timearrow_forward(i) The total electrical resistivity of metals is the sum of the contributions from thermal vibrations, impurities and plastic deformation; (ii) the resistivity rises linearly with temperature above -200 degree Celsius; (iii) increasing the concentration of impurity results in an enhancement of impurity; (iv) plastic deformation also raises the electrical resistivity due to the increased numbers of electron-scattering dislocations. Which of the above statements is false? D. (iv) A. (i) C. (iii) E. All of the above B. (ii) Other:arrow_forward
- The intrinsic carrier concentration of silicon (Si) is expressed as - E n₁=5.2×10¹5T¹.5exp- i electrons at 30°C. n = cm -3 g 2kT cm -3 where Eg = 1.12 eV. Determine the density of Round your answer to 0 decimal places.arrow_forwardThe mean speed of conduction electron in Cu is electrons1.5 × 106 ms-1 and the frequency of vibration of the copper atoms at room temperature is about 4 × 1012 s-1. Estimate the drift mobility of electrons and the conductivity of Cu. The density of Cu is 8.96 g cm-3 and the atomic mass is 63.56 g mol-1.arrow_forwardSilicon atoms with a concentration of 7x 1010 cm3 are added to gallium arsenide GaAs at T = 400 K. Assume that the silicon atoms act as fully ionized dopant atoms and that 15% of the concentration added replaces gallium atoms to free electrons and 85% replaces arsenic to create holes. Use the following parameters for GaAs at T = 300 K: N. = 4.7 x 1017 cm-3 and N, = 7 x 101cm-3. The bandgap is E, = 1.42 eV and it is constant over the temperature range. The donor concentration?arrow_forward
- K:54)arrow_forwardWhat fraction of the electrons in a good conductor have energies between 0.90 EF and EF at T = 0?arrow_forwardRe 14.4 V 11.4 V Rg 8 kohm 12 kohm 12 V 20 V le(mA) A !g-1.425 mA Vee(Volt) Answer the questions given below, since they are taken from the circuit next to the output chart given above a) What common transistor configuration is the given circuit diagram? b) what type is the given transistor? NPN or PNP? Specifyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax