Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 60P
(a)
To determine
Find the value of voltage gain.
(b)
To determine
Find the value of power amplification.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(c) A common emitter BJT circuit and its voltage transfer curve is shown in Fig. 1(c)
respectively. Assume the transistor common-emitter current gain, ß = 50, VBE (on) =
0.7 V, Rg = 100 kn and Rc = 1 k2.
(i) Determine the input voltage at the point x.
(ii) Calculate the base current, Ig and collector current, Ic at the point x.
+Vcc
Vo(V)
Rc
5-
Vo
RB
V, oww
-RAR-
IB
VBE
0.5
V,(V)
15
Fig. 1(c)
-END OF QUESTION-
(ix) To saturate a BJT,
(a) Ia = Icta) (b) Ig> Ic¢pav/Boc (c) Vcc must at least 10 V (d) the emitter must be grounded
(x) If the base-emitter junction is open, the collector voltage is
(a) Vcc
(b) 0 V
(c) floating
(d) 0.2 V
None
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 40.4 - Determine the three lowest rotational energy...Ch. 40.6 - Prob. 1BECh. 40.6 - Prob. 1CECh. 40.8 - Prob. 1DECh. 40 - What type of bond would you expect for (a) the N2...Ch. 40 - Describe how the molecule CaCl2 could be formed.Ch. 40 - Does the H2 molecule have a permanent dipole...Ch. 40 - Although the molecule H3 is not stable, the ion...Ch. 40 - The energy of a molecule can be divided into four...Ch. 40 - Would you expect the molecule H2+ to be stable? If...
Ch. 40 - Explain why the carbon atom (Z = 6) usually forms...Ch. 40 - Prob. 8QCh. 40 - Prob. 9QCh. 40 - Prob. 10QCh. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 15QCh. 40 - Prob. 16QCh. 40 - Prob. 17QCh. 40 - Prob. 18QCh. 40 - Prob. 19QCh. 40 - Prob. 20QCh. 40 - Prob. 21QCh. 40 - Prob. 22QCh. 40 - Prob. 23QCh. 40 - Prob. 1PCh. 40 - (II) The measured binding energy of KCl is 4.43eV....Ch. 40 - (II) Estimate the binding energy of the H2...Ch. 40 - (II) The equilibrium distance r0 between two atoms...Ch. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - (III) (a) Apply reasoning similar to that in the...Ch. 40 - (I) Show that the quantity 2/I has units of...Ch. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 13PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - (II) Calculate the bond length for the NaCl...Ch. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62GPCh. 40 - Prob. 63GPCh. 40 - Prob. 64GPCh. 40 - Prob. 65GPCh. 40 - Prob. 66GPCh. 40 - Prob. 67GPCh. 40 - Prob. 68GPCh. 40 - Prob. 69GPCh. 40 - Prob. 70GPCh. 40 - Prob. 71GPCh. 40 - Prob. 72GPCh. 40 - Prob. 73GPCh. 40 - Prob. 74GPCh. 40 - Prob. 75GPCh. 40 - Prob. 76GPCh. 40 - Prob. 77GPCh. 40 - Prob. 78GPCh. 40 - Prob. 79GPCh. 40 - Prob. 80GPCh. 40 - Prob. 81GPCh. 40 - Prob. 82GPCh. 40 - Prob. 83GPCh. 40 - Prob. 84GPCh. 40 - Prob. 85GPCh. 40 - Prob. 86GPCh. 40 - Prob. 87GPCh. 40 - Prob. 88GPCh. 40 - Prob. 89GP
Knowledge Booster
Similar questions
- In a transistor circuit given determine IB, IC, IE, VCE, αdc and VBC.Neglect VBE, take β=100 1.VBB=10V,Vcc=15v,Rc=10k,Rb=1M,arrow_forward(ii) Show how the bandgap energy of a semiconductor particle varies with the size of the particle.arrow_forward(a) What happens to IC if the supply voltage is low? (b) What voltage VCE would occur if the transistor base–emitter junction fails by becoming open? (c) What voltage VCE would result if the transistor base–emitter junction fails by becoming a short?arrow_forward
- 2) (i) The Fermi Silver is temperature we 14% in which Fermi Energy of the 4.4 ev. At what (au expect a probability that electrons have an silver Joom density is 2% energy? (11) Consider silicon sample at temperature with hole 2x (012 cm-3 be energy a above the a) Estimate the electron density b) determine the acceptor density Concentration if the donor density is 1012arrow_forward1) A Si p-n-p transistor has the following properties at room temperature: Tn = Tp 0.1 us NE 1019 сті Emitter concentration — 10 ст2/s -3 Dn = Dp NB 3D 1016 ст Base concentration Nc 1019 ст -3 = Collector concentration WE 3 µm Emitter width W 1.5 um Metallurgical base width, i.e. the distance between base-emitter junction and base-collector junction A = 10-5 cm² = Cross-sectional area If VCB = 0 V and VEB = 0.6 V, calculate the following: ЕВ a) Neutral base width (WB) b) Base transport factor c) Emitter injection efficiency d) a, ß and y. e) Ic, Ig and Ig.arrow_forwardAn abrupt uniformly doped silicon pn junction is reversed biased by Vg= 20 V. If Na(in n-side)=10" cm, N,(in p-side)=10" cm then the junction capacitance is 20 pF. The junction capacitance if Na(in n-side) increased to 3x10" cm' is equal to ....pF. a) 9 b)21 c)35 d) 52 e) 87arrow_forward
- An NPN transistor is fabricated such that the collector has a uniform doping of 5 x 1015arrow_forwardIn the circuit shown in the picture, the sum of the tlh time of the transition transistor and the propogation time of the inverter behind it is 500 ns. So what should the (W / L) G ratio be?arrow_forwardAssume you are to create n+pn transistor using n- and p-typed doped silicon with the following doping concentrations, 3 1018 /cm3, 6.2/cm3, and 5 1016/cm3, for emitter, base and collector regions, respectively. You also know Ln = 10 μm, Lp = 4 μm, μn = 1600 cm2/Vs, μp = 600 cm2/Vs, ni = 1,5 1010 1/cm3, q = 1,602 10-19 C, er = 12, eo = 8,85 10-12 F/m, VT = 25 mV. What is the minimum VCE for operation in active mode assuming hFE = β is very large?arrow_forward
- Nonearrow_forward7. Consider the circuits shown in figures (a) and (b) below 2K ww- 1K ww- 10K 10K ww ww- 10V 10V 10.7V= 5V (а) (b) If the transistors in Figures (a) and (b) have current gain (Bae) of 100 and 10 respectively, then they operate in the (a) active region and saturation region respectively (b) saturation region and active region respectively (c) saturation region in both cases (d) active region in both casesarrow_forward(c) Calculate the Fermi energy of silver from the data given below: atom. Density of Silver = 10.5 gm/cm³ atomic weight = 108 h = 6.62×10-34 Joule - sec m = 9.1×10-³1 Kg. Avogadro's number =6.02×10-21 atoms/gm-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON