Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 40, Problem 68GP
To determine
Find the number of rotational states present between the vibrational states.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The R-branch of a vibrational-rotational spectrum consists of lines of increasing frequency.
O True
False
Question 9
3
When the total energy of a system is a sum of individual contributions, the partition function is a
product of individual contributions.
O True
O False
Consider a CO molecule that is initially in the ground state of n = 0, l = 0. If the energy of a vibrational transition from the n = 0 state to the n = 1 state in CO could instead be absorbed in a rotational transition, what would be the value of l for the final state?
The moment of inertia of water molecule about an axis bisecting the HOH angle is1.91x10-47 kg m2. Its minimum angular momentum about that axis (other than zero) is ℏ. Inclassical terms, how many revolutions per second do the hydrogen atoms make about the axiswhen in that state? Calculate the rotational constant (cm-1) and bond length of H2O. Does the bondlength seem reasonable?
Chapter 40 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 40.4 - Determine the three lowest rotational energy...Ch. 40.6 - Prob. 1BECh. 40.6 - Prob. 1CECh. 40.8 - Prob. 1DECh. 40 - What type of bond would you expect for (a) the N2...Ch. 40 - Describe how the molecule CaCl2 could be formed.Ch. 40 - Does the H2 molecule have a permanent dipole...Ch. 40 - Although the molecule H3 is not stable, the ion...Ch. 40 - The energy of a molecule can be divided into four...Ch. 40 - Would you expect the molecule H2+ to be stable? If...
Ch. 40 - Explain why the carbon atom (Z = 6) usually forms...Ch. 40 - Prob. 8QCh. 40 - Prob. 9QCh. 40 - Prob. 10QCh. 40 - Prob. 11QCh. 40 - Prob. 12QCh. 40 - Prob. 13QCh. 40 - Prob. 14QCh. 40 - Prob. 15QCh. 40 - Prob. 16QCh. 40 - Prob. 17QCh. 40 - Prob. 18QCh. 40 - Prob. 19QCh. 40 - Prob. 20QCh. 40 - Prob. 21QCh. 40 - Prob. 22QCh. 40 - Prob. 23QCh. 40 - Prob. 1PCh. 40 - (II) The measured binding energy of KCl is 4.43eV....Ch. 40 - (II) Estimate the binding energy of the H2...Ch. 40 - (II) The equilibrium distance r0 between two atoms...Ch. 40 - Prob. 5PCh. 40 - Prob. 6PCh. 40 - (III) (a) Apply reasoning similar to that in the...Ch. 40 - (I) Show that the quantity 2/I has units of...Ch. 40 - Prob. 9PCh. 40 - Prob. 10PCh. 40 - Prob. 11PCh. 40 - Prob. 12PCh. 40 - Prob. 13PCh. 40 - Prob. 14PCh. 40 - Prob. 15PCh. 40 - Prob. 16PCh. 40 - (II) Calculate the bond length for the NaCl...Ch. 40 - Prob. 18PCh. 40 - Prob. 19PCh. 40 - Prob. 20PCh. 40 - Prob. 21PCh. 40 - Prob. 22PCh. 40 - Prob. 23PCh. 40 - Prob. 24PCh. 40 - Prob. 25PCh. 40 - Prob. 26PCh. 40 - Prob. 27PCh. 40 - Prob. 28PCh. 40 - Prob. 29PCh. 40 - Prob. 30PCh. 40 - Prob. 31PCh. 40 - Prob. 32PCh. 40 - Prob. 33PCh. 40 - Prob. 34PCh. 40 - Prob. 35PCh. 40 - Prob. 36PCh. 40 - Prob. 37PCh. 40 - Prob. 38PCh. 40 - Prob. 39PCh. 40 - Prob. 40PCh. 40 - Prob. 41PCh. 40 - Prob. 42PCh. 40 - Prob. 43PCh. 40 - Prob. 44PCh. 40 - Prob. 45PCh. 40 - Prob. 46PCh. 40 - Prob. 47PCh. 40 - Prob. 48PCh. 40 - Prob. 49PCh. 40 - Prob. 50PCh. 40 - Prob. 51PCh. 40 - Prob. 52PCh. 40 - Prob. 53PCh. 40 - Prob. 54PCh. 40 - Prob. 55PCh. 40 - Prob. 56PCh. 40 - Prob. 57PCh. 40 - Prob. 58PCh. 40 - Prob. 59PCh. 40 - Prob. 60PCh. 40 - Prob. 61PCh. 40 - Prob. 62GPCh. 40 - Prob. 63GPCh. 40 - Prob. 64GPCh. 40 - Prob. 65GPCh. 40 - Prob. 66GPCh. 40 - Prob. 67GPCh. 40 - Prob. 68GPCh. 40 - Prob. 69GPCh. 40 - Prob. 70GPCh. 40 - Prob. 71GPCh. 40 - Prob. 72GPCh. 40 - Prob. 73GPCh. 40 - Prob. 74GPCh. 40 - Prob. 75GPCh. 40 - Prob. 76GPCh. 40 - Prob. 77GPCh. 40 - Prob. 78GPCh. 40 - Prob. 79GPCh. 40 - Prob. 80GPCh. 40 - Prob. 81GPCh. 40 - Prob. 82GPCh. 40 - Prob. 83GPCh. 40 - Prob. 84GPCh. 40 - Prob. 85GPCh. 40 - Prob. 86GPCh. 40 - Prob. 87GPCh. 40 - Prob. 88GPCh. 40 - Prob. 89GP
Knowledge Booster
Similar questions
- Consider the HCl molecule, which consists of a hydrogen atom of mass 1 u bound to a chlorine atom of mass 35 u. The equilibrium separation between the atoms is 0.128 nm, and it requires 0.15 eV of work to increase or decrease this separation by 0.01 nm. (a) Calculate the four lowest rotational energies (in eV) that are possible, assuming the molecule rotates rigidly. (b) Find the molecules spring constant and its classical frequency of vibration. (Hint: Recall that U=12Kx2.) (c) Find the two lowest vibrational energies and the classical amplitude of oscillation corresponding to each of these energies. (d) Determine the longest wavelength radiation that the molecule can emit in a pure rotational transition and in a pure vibrational transition.arrow_forwardA diatomic molecule has 18 x 105 eV of rotational energy in the I = 7 quantum state. What is its rotational energy in the I = 0 quantum state? %3Darrow_forwardIn a vibrational-rotational spectroscopy the total energy is the sum of the energies coming from the vibration and rotation (E = E + E₁). Selection rule suggests that for transition to occur Av = ±1 and Al = ±1. At room temperature, it is assumed that the lowest vibrational state is populated and the energy can only travel upwards due to lack of population of upper vibrational states thus Av = +1. What would be the energy of a line for R, P and Q-branch if a.) Al = +1, b.) Al = -1 and c.) Al = 0 respectively.arrow_forward
- A CO molecule starts in the vibrational and rotational ground state with k = 900 N/m. Calculate the energy of the CO molecule.arrow_forwardThe force constant of the Cl2 molecule is 323 Nm-1. Calculate the energy at the zero point of vibration and if this amount of energy is converted to translational energy, how fast would the molecule be moving?arrow_forwardThe characteristic rotational energy for a diatomic molecule consisting of two idential atoms of mass 14 u (unified mass units) is 3.68 e-4 eV. Calculate the separation distance between the two atoms. Subarrow_forward
- The CO molecule makes a transition from the J = 1 to the J = 2 rotational state when it absorbs a photon of frequency 2.30 x 1011 Hz. (a) Find the moment of inertia of this molecule from these data.arrow_forwardDetermine the wavenumbers for the two lowest energy rotational excitations for trans- 3251°F4 H2 if the S-F bond distance is 1.74 Å and the S-H bond distance is 1.34 Å.arrow_forwardSet up the relevant equations with estimates of all missing parameters. The molecular bond (spring constant) of HCl is about 470 N/m. The moment of incrtia is 2.3 x 10-47 kg-m². (a) At 300 K what is the probability that the molecule is in its lowest excited vibrational state? (c) Of the molecules in the vibrational ground state what is the ratio of the number in the gronnd rotational state to the number in the first excited rotational state?arrow_forward
- The effective spring constant associated with bonding in the N2 molecule is 2 297 N/m. The nitrogen atoms each have a mass of 2.32 x 10-26 kg, and their nuclei are 0.120 nm apart. Assume the molecule is rigid. The first excited vibrational state of the molecule is above the vibrational ground state by an energy difference ΔE. Calculate the J value of the rotational state that is above the rotational ground state by the same energy difference ΔE.arrow_forwardWhen a hypothetical diatomic molecule having atoms 0.8890 nm apart undergoes a rotational transition from the l= 2 state to the next lower state, it gives up a photon having energy 8.850 * 10-* eV. When the molecule undergoes a vibrational transition from one energy state to the next lower energy state, it gives up 0.2540 eV. Find the force constant of this molecule. O k'=30.22 N/m k=31.05 N/m k'=20.22 N/m k'=31.55 N/m k' =29.55 N/marrow_forwardPlease fast...arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning