(a)
Interpretation: Whether the reaction,
Concept introduction: The
(a)

Answer to Problem 78E
The reaction,
Explanation of Solution
The given chemical equation is shown below.
The oxidation state of carbon in
The oxidation state of each hydrogen atom in
The oxidation state of oxygen in
The oxidation state ofcarbon and each oxygen atom in
The oxidation state of each hydrogen atom and oxygen in
The oxidation state of carbon increases from
So, carbon is oxidized from
Thus,
The oxidation state of oxygen decreases from
So, oxygen is reduced from
Thus,
(b)
Interpretation: Whether the reaction,
Concept introduction: The oxidation-reduction reactions involve the changes with respect to the oxidation state of the species that are interacting in reaction. These reactions are helpful in the identification of a substance that is oxidized or reduced. Along with that these are also useful in predicting reaction species that act as an oxidizing agent/ reducing agent.
(b)

Answer to Problem 78E
The reaction,
Explanation of Solution
The given chemical equation is shown below.
The oxidation state of zinc in
The oxidation state of hydrogen in
The oxidation state of chlorine in
The oxidation state of zinc and each chlorine atom in
The oxidation state of each hydrogen atom in
The oxidation state of zinc increases from
So, zinc is oxidized from
Thus,
The oxidation state of hydrogen decreases from
So, hydrogen is reduced from
Thus,
(c)
Interpretation: Whether the reaction,
Concept introduction: The oxidation-reduction reactions involve the changes with respect to the oxidation state of the species that are interacting in reaction. These reactions are helpful in the identification of a substance that is oxidized or reduced. Along with that these are also useful in predicting reaction species that act as an oxidizing agent/ reducing agent.
(c)

Answer to Problem 78E
The reaction,
Explanation of Solution
The given chemical equation is shown below.
The oxidation state of each chromium atom and oxygen atom in
The oxidation state of oxygen and hydrogen atom in
The oxidation state of chromium atom and each oxygen atom in
The oxidation state of each hydrogen atom and oxygen atom in
The oxidation state of all the elements present on reactant side are equal to the oxidation state of all the elements present on product side.
So, there is no change in oxidation state of any element.
Thus, the given reaction is not the oxidation-reduction reaction.
(d)
Interpretation: Whether the reaction,
Concept introduction: The oxidation-reduction reactions involve the changes with respect to the oxidation state of the species that are interacting in reaction. These reactions are helpful in the identification of a substance that is oxidized or reduced. Along with that these are also useful in predicting reaction species that act as an oxidizing agent/ reducing agent.
(d)

Answer to Problem 78E
The reaction,
Explanation of Solution
The given chemical equation is shown below.
The oxidation state of each atom of oxygen in
The oxidation state of nitrogen atom and oxygen atom in
The oxidation state of each oxygen atom in
The oxidation state ofnitrogen atom and each oxygen atom in
The oxidation state of nitrogen increases from
So, nitrogen is oxidized from
Thus,
The oxidation state of oxygen decreases from
So, oxygen is reduced from
Thus,
(e)
Interpretation: Whether the reaction,
Concept introduction: The oxidation-reduction reactions involve the changes with respect to the oxidation state of the species that are interacting in reaction. These reactions are helpful in the identification of a substance that is oxidized or reduced. Along with that these are also useful in predicting reaction species that act as an oxidizing agent/ reducing agent.
(e)

Answer to Problem 78E
The reaction,
Explanation of Solution
The given chemical equation is shown below.
The oxidation state of each atom of oxygen in
The oxidation state of each hydrogen atom in
The oxidation state of each hydrogen atom and oxygen atom in
The oxidation state of each oxygen atom in
The oxidation state of oxygen increases from
So, oxygen is oxidized from
Thus,
The oxidation state of oxygen decreases from
So, oxygen is reduced from
Thus,
(f)
Interpretation: Whether the reaction,
Concept introduction: The oxidation-reduction reactions involve the changes with respect to the oxidation state of the species that are interacting in reaction. These reactions are helpful in the identification of a substance that is oxidized or reduced. Along with that these are also useful in predicting reaction species that act as an oxidizing agent/ reducing agent.
(f)

Answer to Problem 78E
The reaction,
Explanation of Solution
The given chemical equation is shown below.
The oxidation state of copper atom in
The oxidation state of chlorine atom in
The oxidation state of copper atom and each chlorine atom in
The oxidation state of copper atom in
The oxidation state of copper increases from
So, copper is oxidized from
Thus,
The oxidation state of copper decreases from
So, copper is reduced from
Thus,
(g)
Interpretation: Whether the reaction,
Concept introduction: The oxidation-reduction reactions involve the changes with respect to the oxidation state of the species that are interacting in reaction. These reactions are helpful in the identification of a substance that is oxidized or reduced. Along with that these are also useful in predicting reaction species that act as an oxidizing agent/ reducing agent.
(g)

Answer to Problem 78E
The reaction,
Explanation of Solution
The given chemical equation is shown below.
The oxidation state of hydrogen atom and chlorine atom in
The oxidation state of nitrogen and each hydrogen atom in
The oxidation state of nitrogen atom and each hydrogen atom in
The oxidation state of chlorine atom in
The oxidation state of all the elements present on reactant side are equal to the oxidation state of all the elements present on product side.
So, there is no change in oxidation state of any element
Thus, the given reaction is not the oxidation-reduction reaction.
(h)
Interpretation: Whether the reaction,
Concept introduction: The oxidation-reduction reactions involve the changes with respect to the oxidation state of the species that are interacting in reaction. These reactions are helpful in the identification of a substance that is oxidized or reduced. Along with that these are also useful in predicting reaction species that act as an oxidizing agent/ reducing agent.
(h)

Answer to Problem 78E
The reaction,
Explanation of Solution
The given chemical equation is shown below.
The oxidation state of silicon atom and each chlorine atom in
The oxidation state of chlorine and hydrogen atom in
The oxidation state of silicon atom and each oxygen atom in
The oxidation state of all the elements present on reactant side are equal to the oxidation state of all the elements present on product side.
So, there is no change in oxidation state of any element
Thus, the given reaction is not the oxidation-reduction reaction.
(i)
Interpretation: Whether the reaction,
Concept introduction: The oxidation-reduction reactions involve the changes with respect to the oxidation state of the species that are interacting in reaction. These reactions are helpful in the identification of a substance that is oxidized or reduced. Along with that these are also useful in predicting reaction species that act as an oxidizing agent/ reducing agent.
(i)

Answer to Problem 78E
The reaction,
Explanation of Solution
The given chemical equation is shown below.
The oxidation state of magnesium in
The oxidation state of magnesium atom and each chlorine atom in
The oxidation state of silicon atom and each chlorine atom in
The oxidation state of silicon in
The oxidation state of magnesium increases from
So, magnesium is oxidized from
Thus,
The oxidation state of silicon decreases from
So, silicon is reduced from
Thus,
Want to see more full solutions like this?
Chapter 4 Solutions
Chemical Principles
- Diethyl malonate can be prepared by the following reaction sequence. Draw the structures of each of the missing intermediates in the boxes provided EtO 0 H3C 11 C 1. Br₂ PBr OH 2 H₂O 010 0 CH3CH₂OH C CH2 OEt Ha CH3CH2OH на NaCN H₂SO4 NC H₂O, heat CH2 OCH2CH3arrow_forwardShow how you would accomplish each of the following transformations. More than one step may be quired. Show all reagents and all intermediate structures. [three only] A. 0 CH3 B. C. D. H 0 0 OCH 3 CH₂CO₂CH2CH3 H3C ➤ HN C NO₂ Clarrow_forwardChoose the BEST reagent for carrying out each of the following conversions. A. CO₂CH3 CO₂CH3 0 CO₂H a. LiAlH4, ether C. CrO3, pyridine B. 0 H a. C. NaBH4, ethanol NaOH, H2O CO₂H OH HD b. NaBH4, ethanol d. H₂/Pd CH₂OH b. CH₂PPh3 d. All of the abovearrow_forward
- Write the complete stepwise mechanism for the acid-catalyzed hydrolysis of the following amide to yield mandelic acid. Show all electron flow with arrows and draw the structures of all intermediate species. OH H-OH₂ CnH2 :0: OH C OH + NH4 10: The purpose of the acid catalyst in the hydrolysis of an amide is: to enhance the electrophilicity of the amide carbonyl carbon a. to enhance the nucleophilicity of the water molecule b. C. to enhance the electrophilicity of the water molecule d. to shift the equilibrium of the reactionarrow_forward1.arrow_forwardCan I please get help with this?arrow_forward
- . Provide IUPAC names for each of the following structures OR draw structures corresponding to each of the following names: [Three only]kk a. H₂N- 0 COCH2CH3 benzocaine b. What is the correct structure for phenylbenzoate? C a. 0 C-O O b. H3C-C-O 0 0 C-O-CH3 d. CH₂O C-CHZ c. Acetyl chloride d. 3,4,5-trimethoxybenzoyl chloridearrow_forward. Draw structures corresponding to each of the following names or Provide IUPAC names for each of the ollowing structures [for 4 ONLY]. A. 2-propylpentanoic acid. B. m-chlorobenzoic acid. C. 0 0 HOC(CH2) COH glutaricadd D. E. F. 0 OH HO OH HO INCO salicylicadd H3C CH3 C=C tgicadd H COOH CH₂C=N 4arrow_forwardThe reaction of a carboxylic acid with an alcohol in the presence of acid is termed Fischer esterification. 0 0 C .C. OH + CH3OH OCH3 + H₂O HCI A B C A. The nucleophile in this reaction is B. Compound C functions as a. a base scavenger b. a solvent C. a catalyst in this reaction. d. a neutralizer C. Fischer esterification is an example of: ........ a. nucleophilic acyl addition b. nucleophilic acyl substitution c. nucleophilic acyl elimination d. nucleophilic acyl rearrangementarrow_forward
- The Handbook of Chemistry and Physics gives solubilities of the following compounds in grams per 100 mL of water. Because these compounds are only slightly soluble, assume that the volume does not change on dissolution and calculate the solubility product for each. (a) BaSeO4, 0.0118 g/100 mLarrow_forwardCan I please get help with answering this?arrow_forwardThese are in the wrong boxes. Why does the one on the left have a lower molar mass than the one on the right?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





