![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_largeCoverImage.gif)
Concept explainers
Consider the 30-Ω resistor in Fig. 4.134. First compute the Thevenin equivalent circuit as seen by the 30-Ω resistor. Compute the value of R that results in Thevenin equivalent resistance equal to the 30-Ω resistance and then calculate power delivered to the 30-Ω resistor. Now let R = 0 Ω, 110 Ω, and ∞, calculate the power delivered to the 30-Ω resistor in each case. What can you say about the value of R that will result in the maximum power that can be delivered to the 30-Ω resistor?
Figure 4.134
![Check Mark](/static/check-mark.png)
Find the Thevenin equivalent seen by the
Calculate the power delivered to the
Answer to Problem 68P
The Thevenin voltage is
The power delivered to the
Explanation of Solution
Given data:
Refer to Figure 4.134 in the textbook.
The current source is
The voltage source is
The Thevenin resistance
Calculation:
In the given circuit, find the Thevenin voltage by removing the 30 ohms resistor and the modified circuit is shown in Figure 1.
The modified circuit is shown in Figure 1.
In Figure 1, the current source with parallel resistance is converted into voltage source with series resistance using source transformation. The voltage V is calculated by using ohms law as follows,
The source transformation is shown in Figure 2.
In Figure 2, the Thevenin voltage is,
Refer to Figure 4.134 in the textbook.
In the given circuit, find the Thevenin resistance by turning off the
The modified circuit is shown in Figure 3.
In Figure 3, the Thevenin resistance is,
Substitute
Substitute 50 for R in equation (1) to find the Thevenin voltage in volts.
Substitute 50 for R in equation (2) to find the Thevenin resistance in ohms.
The Thevenin equivalent connected to the 30 ohms resistor is shown in Figure 4.
The power delivered to the 30 ohms resistor is,
Substitute 60 for
Consider the resistance
When
Substitute 0 for R in equation (2) to find the Thevenin resistance in ohms.
When
Substitute 0 for R in equation (1) to find the Thevenin voltage in volts.
When
Substitute
Consider the resistance
When
Substitute 110 for R in equation (2) to find the Thevenin resistance in ohms.
When
Substitute 110 for R in equation (1) to find the Thevenin voltage in volts.
When
Substitute
Consider the resistance
When
Simplify equation (2) as follows,
Substitute
When
Simplify equation (1) as follows,
Substitute
When
Substitute
Thus, when
Conclusion:
Thus, the Thevenin voltage is
The power delivered to the
Want to see more full solutions like this?
Chapter 4 Solutions
Fundamentals of Electric Circuits
- Solve this experiment with an accurate solution, please. Thank you.arrow_forwardA lossless uncharged transmission line of characteristic impedance Zo = 600 and length T = 1us is connected to a 180 load. If this transmission line is connected at t = 0 to a 90 V dc source with an internal resistance of 900, from a bounce diagram of this system sketch (a) the voltage at z=0, z=L, and z = L/2 for up to 7.25μs and (b) calculate the load voltage after an infinite amount of time.arrow_forwardA lossless uncharged transmission line of length L = 0.45 cm has a characteristic impedance of 60 ohms. It is driven by an ideal voltage generator producing a pulse of amplitude 10V and width 2 nS. If the transmission line is connected to a load of 200 ohms, sketch the voltage at the load as a function of time for the interval 0 < t < 20 nS. You may assume that the propagation velocity of the transmission is c/2.arrow_forward
- The VSWR (Voltage Standing Wave Ratio) is measured to be 2 on a transmission line. Find two values of the reflection coefficient with one corresponding to Z > Zo and the other to Zarrow_forwardA dc voltage of unknown value Vand internal resistance Reis connected through a switch to a lossless transmission line of Zo = 1000. If the first 5 μS of the voltages at z = 0 and z = L are observed to be as shown below, calculate Vo, RG, the load resistanceR,, and the transit time T. 100 + [V]:-0. V 90 [V]:-V 100 75 I, Տ 1,μs 2 4 6 0 2 4 6arrow_forwardA lossless open circuited transmission line behaves as an equivalent capacitance of Ceq = Tan (BL) Show for BL << 1 that Ceq = C'L where L is the length of the transmission line and wZo C' is the lumped parameter capacitance per unit length of the transmission line. Hint: For x small, Tan(x) = x.arrow_forward= A generator with VG 300V and R = 50 is connected to a load R = 750 through a 50 lossless transmission line of length L = 0.15 m. (a) Compute Zin, the input impedance of the line at the generator end. (b) Compute and V. (c) Compute the time-average power Pin delivered to the line. (d) Compute VL, IL, and the time-average power delivered to the load, PL (e) How does Pin compare to PL? Explain.arrow_forwardFor the regulated power supply circuit, assume regular diodes with 0.7V forward drop. Use a 15V (peak), 60Hz sine wave at the transformer secondary and assume a maximum ripple level of 1V. (a) Compute the unknown components needed to design 10V DC supply.Hint: find R first, and then C. What is the ripple level for C=22µF?Sketch the rectified, filtered, and regulated outputsarrow_forwardA) Find the solution of B) Find the convolution of Sewt (t-π)dt 8 e-atu(t)e-blu(t)arrow_forwardConsider the signal: f(t)= 0, ㅠ 1 Use the Fourier transform formula to find F(w). otherwisearrow_forwardA half-wave controlled rectifier is supplied by a 230 Vrms voltage source and has load resistance of 2502. Calculate the delay angle a that produces a load-absorbed power of 200W.arrow_forwardQ6 The FET shown in Fig. 1.43 has gm = 3.4 mS and rd =100 K. Find the approximate lower cutoff frequency. Ans: 735.1 Hz. 25V 1.5ΜΩ 20 ΚΩ 0.02µF HH 2ΚΩ 0.02µF HH 330kQ 820 ΩΣ 1.0µF www 40ΚΩarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)