Concept explainers
For the circuit in Fig. 4.109, find the Thevenin equivalent between terminals a and b.
Figure 4.109
Find the Thevenin voltage and Thevenin resistance at terminals a-b of the circuit shown in Figure 4.109.
Answer to Problem 42P
The Thevenin voltage is
Explanation of Solution
Given data:
Refer to Figure 4.109 in the textbook.
The voltage source is
The current source is
Calculation:
In the given circuit, find the Thevenin resistance by turning off
The modified circuit is shown in Figure 1.
In Figure 1,
The modified circuit is shown in Figure 2.
In Figure 2, the three
For the delta connection in Figure 3, the value of the resistor
Similarly,
And,
The modified circuit is shown in Figure 4.
In Figure 4,
The modified circuit is shown in Figure 5.
In Figure 5, the Thevenin resistance is,
Refer to Figure 4.109 in the textbook.
The given circuit is modified as shown in Figure 6.
In Figure 6, the voltage source with series resistance is converted into current source with parallel resistance by source transformation method.
That is,
Similarly, the current source with parallel resistance is converted into voltage source with series resistance by source transformation method.
That is,
The source transformation is shown in Figure 7.
In Figure 7,
The modified circuit is shown in Figure 8.
In Figure 8, the current source with parallel resistance is converted into voltage source with series resistance by source transformation method.
That is,
The source transformation is shown in Figure 9.
In Figure 9, apply Kirchhoff’s voltage law to the loop
Rearrange the equation (1) as follows,
In Figure 9, apply Kirchhoff’s voltage law to the loop
Substitute
Substitute 0 for
In Figure 9, apply Kirchhoff’s voltage law to the outer loop as follows.
Substitute 0 for
Since, the voltage
The Thevenin equivalent is shown in Figure 10.
Conclusion:
Thus, the Thevenin voltage is
Want to see more full solutions like this?
Chapter 4 Solutions
Fundamentals of Electric Circuits
Additional Engineering Textbook Solutions
Java: An Introduction to Problem Solving and Programming (8th Edition)
Electric Circuits. (11th Edition)
Database Concepts (8th Edition)
Thermodynamics: An Engineering Approach
Modern Database Management
Starting Out with C++ from Control Structures to Objects (9th Edition)
- 4.8 Using superposition, find V, in the circuit of Fig. 4.76. Check with PSpice or MultiSim. Vo 12 3 V 9 V Figure 4.76 For Prob. 4.8. wwarrow_forwardFind the Norton equivalent at terminals a-b of the circuit in Figarrow_forward4.46 Using Fig. 4.113, design a problem to help other end students better understand Norton equivalent circuits. R₂ ww R www www R₂arrow_forward
- I need an answer that uses the power supply conversion principle. An answer that uses the source conversion principle.arrow_forwardDetermine the Norton equivalent at terminals a-b for the circuit in Fig. 4.115. 2A (1) 10i, + 4Ω 2Ω www a o barrow_forwardFor the circuit in Fig. 4.3. find vo when i, = 15 and i, = 30 A. %3D is 2Ω 4 Ω: Figure 4.3 For Practice Prob. 4.1.arrow_forward
- Given the circuit in Fig. 4.117, obtain the Norton equivalent as viewed from terminals:arrow_forwardQ4. For the below circuit, determine: (a) The Thevenin equivalent circuit as seen from a-b. (b) The value of R and Ps for maximum power transfer to R₁ 40V 402 m 292 m 1210 a b R₁arrow_forwardUse superposition to find v0 in the circuit of Fig.4.77.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,