Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.88P
To determine
To sketch − The transfer characteristics of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Please provide a COMPLETE and CLEAR solution.
A silicon diode is in parallel with a germanium diode and is connected to a
load resistor having a value of 20 kQ and a forward supply voltage of 10 V.
What is the approximate voltage across the silicon diode? *
A. 10 V
B. 1.0 V
C. 0.7 V
D. 0.3 V
Q4: Consider a Zener diode with a nominal voltage (10v @ 10mA) and a resistance of 50 ohm. Calculate the
expected Zener voltage if the diode current is halved?
Chapter 4 Solutions
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Ch. 4.1 - Prob. 4.1ECh. 4.1 - Prob. 4.2ECh. 4.1 - Prob. 4.3ECh. 4.1 - Prob. 4.4ECh. 4.1 - Prob. 4.5ECh. 4.2 - Prob. 4.6ECh. 4.2 - Prob. 4.7ECh. 4.2 - Prob. 4.8ECh. 4.2 - Prob. 4.9ECh. 4.3 - Prob. 4.10E
Ch. 4.3 - Prob. D4.11ECh. 4.3 - Prob. 4.12ECh. 4.3 - Prob. 4.13ECh. 4.3 - Prob. 4.14ECh. 4.3 - Prob. D4.15ECh. 4.4 - Prob. 4.16ECh. 4.4 - Prob. 4.17ECh. 4.4 - Prob. 4.18ECh. 4.5 - Prob. 4.19ECh. 4.5 - Prob. 4.20ECh. 4.5 - Prob. 4.21ECh. 4.5 - Prob. 4.22ECh. 4.5 - Prob. 4.23ECh. 4.5 - Prob. 4.24ECh. 4.5 - Prob. 4.25ECh. 4.6 - Prob. 4.26ECh. 4.6 - Prob. 4.27ECh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. D4.7PCh. 4 - Prob. D4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. D4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. D4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. D4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. D4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. D4.56PCh. 4 - Prob. D4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. D4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. D4.63PCh. 4 - Prob. D4.64PCh. 4 - Prob. D4.65PCh. 4 - Prob. D4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. D4.73PCh. 4 - Prob. D4.74PCh. 4 - Prob. D4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. D4.80PCh. 4 - Prob. D4.81PCh. 4 - Prob. D4.82PCh. 4 - Prob. D4.83PCh. 4 - Prob. D4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - Prob. 4.89PCh. 4 - Prob. 4.90PCh. 4 - Prob. 4.91PCh. 4 - Prob. 4.92PCh. 4 - Prob. 4.93PCh. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - Prob. 4.97P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q4: Consider a Zener diode with a nominal voltage (10v @ 10mA) and a resistance of 50 ohm. Calculate the expected Zener voltage if the diode current is doubled?arrow_forwardp4. A biased clamper is connected to a rectangular AC input with 20V on the positive half cycle and -10V on the negative half cycle. The orientation of the Si diode is the same with Vo while the 5V biasing voltage is in opposite connection. The value of R is 100K ohms while the capacitor is 1 microFarad. In P4, what is the voltage across the capacitor? a. 34.3V b. 14.7V c. 24.3V d. 20.7Varrow_forwardFour diodes and one Zener diode are connected to form the circuit below. a) Describe how a single diode behaves when forward biased. 5) draw the output as the input changes from -12 V to +12 V. Assume that all diodes can be represented by a constant-voltage of 0.6 V (in forward bias) and the Zener diode has a breakdown voltage of 6.8 V. d) What is the function of the circuit? Suggest a proper application. I kN Da Drarrow_forward
- 4. A voltage regulator circuit is shown on the right. The resistor value is chosen to obtain an output voltage (across the diode) of 0.7V. Use the diode small-signal model to determine the change in the output voltage when the supply voltage, V+, changes by IV. (This quantity is known as the line regulation and is generally expressed in mV/V) Hint: The answer will be only a function of V+ V+ ▷ R + Voarrow_forwardA designer has a supply of diodes for which a current of 2 mA flows at 0.7 V. Using a 1-mA current source, the designer wishes to create a reference voltage of 1.3 V. Suggest a combination of series and parallel diodes that will do the job as best as possible. How many diodes are needed? What voltage is actually supplied?arrow_forward4.69 A full-wave rectifier circuit with a 500-2 load operates from a 120-V (rms) 60-Hz household supply through a 6-to-1 transformer having a center-tapped secondary winding. It uses two silicon diodes that can be modeled to have a 0.7-V drop for all currents. What is the peak voltage of the rectified output? For what fraction of a cycle does each diode conduct? What is the average output voltage? What is the average current in the load? Hint: the average output voltage can be obtained by using the equation below (see plots below too), but you will need to find out the conduction angle 0 first. T-0 1 - | (10/Zsinp – 0.7)dø v0,avg D1 Us, Vo (V) 6:1 Us 10 V 10 Vans C0.5 k2 0.7 v- 120 Vrms T-0 60 Hz D2 10 Vns mmarrow_forward
- 4.68 A half-wave rectifier circuit with a 500-2 load oper- ates from a 120-V (rms) 60-Hz household supply through a 12-to-1 step-down transformer. It uses a silicon diode that can be modeled to have a 0.7-V drop for any current. What is the peak voltage of the rectified output? For what fraction of the cycle does the diode conduct? What is the average output voltage? What is the average current in the load?arrow_forward4.70 A full-wave bridge rectifier circuit with a 1-k2 load operates from a 120-V (rms) 60-Hz household supply through a 10-to-1 step-down transformer having a single secondary winding. It uses four diodes, each of which can be modeled to have a 0.7-V drop for any current. What is the peak value of the rectified voltage across the load? For what fraction of a cycle does each diode conduct? What is the average voltage across the load? What is the average current through the load?arrow_forward4.69 A full-wave rectifier circuit with a 1-k2 load operates from a 120-V (rms) 60-Hz household supply through a 5-to- 1 transformer having a center-tapped secondary winding. It uses two silicon diodes that can be modeled to have a 0.7-V drop for all currents. What is the peak voltage of the recti- fied output? For what fraction of a cycle does each diode conduct? What is the average output voltage? What is the average current in the load?arrow_forward
- a) Use the diode’s characteristic equation,ID=Is exp(VD/VT), to determine the currentsourceIso that the output voltage is 1.5 V. b) If a load is attached to the output that draws 1 mA, what is the output voltage? c) If the circuit heats up to 40◦C, what is the output voltage without a load?arrow_forward4.18 At what forward voltage does a diode conduct a cur- rent equal to 10001? In terms of Is, what current flows in the same diode when its forward voltage is 0.7 V?arrow_forwardHW4: Problem 1. Using S8MCQ rectifier diodes (a real diode), design a bridge rectifier circuit to convert 120 V rms (60 Hz) to a DC voltage of Vp-10 V (maximum voltage) and ripple voltage of Vr=0.25 V when it delivers 0.25 A to a load. By designing, it means that you have to calculate the value for the capacitor and find what should be the ratio of the primary to secondary winding of the transformer. transformer ac line 120 V (rms). 60 Hz US Vi vi vi Diode rectifier my Filter Vo Loadarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
19 Power Diodes | Power Electronics; Author: Walid Issa Plus;https://www.youtube.com/watch?v=_E-4bIYlNYQ;License: Standard Youtube License