Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 4.1P
To determine

The two possible situations that will happen for the given conditions.

The diode current and terminal voltage across diode for two situations.

Expert Solution & Answer
Check Mark

Answer to Problem 4.1P

The value of diode current and diode terminal voltage is:

For situation 1:

VD = 1.5 V

iD = 0 A

For situation 2:

  VD = 0 ViD = 1.5 A

Explanation of Solution

Given:

Thevenin equivalent of AA Flashlight cell with:

Thevenin voltage (Vth) = 1.5 V

Thevenin resistance (Rth) = 1 Ω

Positive side of battery is connected to the cathode of the ideal diode.

Calculation:

The two possible situations can be:

Situation 1: Cathode terminal of the diode is connected to the positive terminal of the battery.

Situation 2: Anode terminal of the diode is connected to the positive terminal of the battery.

Case 1:

When the cathode is connected to the positive terminal of battery.

The Thevenin equivalent circuit with diode connected as given can be drawn as:

  Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition, Chapter 4, Problem 4.1P , additional homework tip  1

The diode is operating in a reversed biased region as the positive side of the battery is connected to the cathode terminal of diode.

Hence, the ideal diode will behave as an open circuit.

So,

  iD = 0 A(1)

Terminal voltage can be calculated by applying mesh law in the circuit:

  Vth = RthiD + VD

By putting the given values and from equation (1):

  Vth =  VDVD = 1.5 V

Case 2:

When anode terminal of the diode is connected to the positive terminal of battery.

The Thevenin equivalent circuit with diode connected as given can be drawn as:

  Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition, Chapter 4, Problem 4.1P , additional homework tip  2

The diode is operating in forward biased region as the positive side of the battery is connected to the anode terminal of diode.

As it is ideal diode, the cut-in voltage across it will be 0.

Hence,

  VD = 0 V(2)

Current can be calculated by applying mesh law in the circuit:

  Vth = RthiD + VD

By putting the given values and from equation (2):

  1.5 = 1iDiD = 1.51 AiD = 1.5 A

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Help. This is about Diodes
How do you identify the anode of an unmarked diode? When the forward current of a diode increases, its forward resistance The current flowing in a reverse-biased diode circuit is extremely while the resistance of the diode is extremely The Vz of a zener diode will fairly constant even if the power supply voltage The series resistor Rs is used with the zener diode to the zener current Iz to a level.
10+ D NAME: The diodes in the circuit below have a saturation current Is = 10-¹4A. The NMOSFET has a threshold voltage of +1V and a K parameter of 10mA/V². > ID = Is (evo/VT - 1) a) Use the exponential diode model b) Oops. Someone built the circuit below, and apparently made a mistake selecting the components. They measure the voltage VA and it is equal to 1.9V. Based on VA = 1.9V, determine the expected value of V₂. +1 -3 V AVD -0.4 3-V 3-2V0 I VA=1.9V 041 VA to calculate VA. 2.2 ΚΩ +10V T 100 Ω NMOSFET VB Ins=4.05m

Chapter 4 Solutions

Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition

Ch. 4.3 - Prob. D4.11ECh. 4.3 - Prob. 4.12ECh. 4.3 - Prob. 4.13ECh. 4.3 - Prob. 4.14ECh. 4.3 - Prob. D4.15ECh. 4.4 - Prob. 4.16ECh. 4.4 - Prob. 4.17ECh. 4.4 - Prob. 4.18ECh. 4.5 - Prob. 4.19ECh. 4.5 - Prob. 4.20ECh. 4.5 - Prob. 4.21ECh. 4.5 - Prob. 4.22ECh. 4.5 - Prob. 4.23ECh. 4.5 - Prob. 4.24ECh. 4.5 - Prob. 4.25ECh. 4.6 - Prob. 4.26ECh. 4.6 - Prob. 4.27ECh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. D4.7PCh. 4 - Prob. D4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. D4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. D4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. D4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. D4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. D4.56PCh. 4 - Prob. D4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. D4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. D4.63PCh. 4 - Prob. D4.64PCh. 4 - Prob. D4.65PCh. 4 - Prob. D4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. D4.73PCh. 4 - Prob. D4.74PCh. 4 - Prob. D4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. D4.80PCh. 4 - Prob. D4.81PCh. 4 - Prob. D4.82PCh. 4 - Prob. D4.83PCh. 4 - Prob. D4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - Prob. 4.89PCh. 4 - Prob. 4.90PCh. 4 - Prob. 4.91PCh. 4 - Prob. 4.92PCh. 4 - Prob. 4.93PCh. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - Prob. 4.97P
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Electric Motor Control
Electrical Engineering
ISBN:9781133702818
Author:Herman
Publisher:CENGAGE L
Tutorial: Photoconductivity; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=20GlFVyxqHY;License: Standard YouTube License, CC-BY
photoconductive cell; Author: Electronics Engineering;https://www.youtube.com/watch?v=Bxo3v_5QGaA;License: Standard Youtube License