Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.31P
To determine
The value of rise in temperature.
The value of power dissipated in the diode in its final state.
The value of rise in temperature per watt of power dissipation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the following circuit diagram. Using practical diode model solve the following items.
i. What is the type of rectification in this circuit?
ii. Calculate the total peak secondary voltage (Note that “RMS" value is given in
the circuit)
iii. Sketch the plot of time vs voltage over Load (RL)
iv. Find the average voltage over Load.
v. Find the maximum current passing over diodes.
vi. Find the peak inverse voltage (PIV) over the diodes.
vii. Find the minimum fuse current rating for the primary coil.
5:1
D
DA
120 V rms
D3
D2
RL=10kQ
RL
out
ell
lelll
Four diodes and one Zener diode are connected to form the circuit below.
a) Describe how a single diode behaves when forward biased.
5) draw the output as the input changes from -12 V to +12 V. Assume that all diodes can be
represented by a constant-voltage of 0.6 V (in forward bias) and the Zener diode has a
breakdown voltage of 6.8 V.
d) What is the function of the circuit? Suggest a proper application.
I kN
Da
Dr
There are three diode models namely (i) the exponential, (ii) ideal and (iii) the constant voltage source.
a) Please define each model and provide the factors that influence the choice of a diode model when analyzing a circuit ?
b) Please provide sketches of the I-V characteristic of each model.
Chapter 4 Solutions
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Ch. 4.1 - Prob. 4.1ECh. 4.1 - Prob. 4.2ECh. 4.1 - Prob. 4.3ECh. 4.1 - Prob. 4.4ECh. 4.1 - Prob. 4.5ECh. 4.2 - Prob. 4.6ECh. 4.2 - Prob. 4.7ECh. 4.2 - Prob. 4.8ECh. 4.2 - Prob. 4.9ECh. 4.3 - Prob. 4.10E
Ch. 4.3 - Prob. D4.11ECh. 4.3 - Prob. 4.12ECh. 4.3 - Prob. 4.13ECh. 4.3 - Prob. 4.14ECh. 4.3 - Prob. D4.15ECh. 4.4 - Prob. 4.16ECh. 4.4 - Prob. 4.17ECh. 4.4 - Prob. 4.18ECh. 4.5 - Prob. 4.19ECh. 4.5 - Prob. 4.20ECh. 4.5 - Prob. 4.21ECh. 4.5 - Prob. 4.22ECh. 4.5 - Prob. 4.23ECh. 4.5 - Prob. 4.24ECh. 4.5 - Prob. 4.25ECh. 4.6 - Prob. 4.26ECh. 4.6 - Prob. 4.27ECh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. D4.7PCh. 4 - Prob. D4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. D4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. D4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. D4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. D4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. D4.56PCh. 4 - Prob. D4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. D4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. D4.63PCh. 4 - Prob. D4.64PCh. 4 - Prob. D4.65PCh. 4 - Prob. D4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. D4.73PCh. 4 - Prob. D4.74PCh. 4 - Prob. D4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. D4.80PCh. 4 - Prob. D4.81PCh. 4 - Prob. D4.82PCh. 4 - Prob. D4.83PCh. 4 - Prob. D4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - Prob. 4.89PCh. 4 - Prob. 4.90PCh. 4 - Prob. 4.91PCh. 4 - Prob. 4.92PCh. 4 - Prob. 4.93PCh. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - Prob. 4.97P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What is CEMF?arrow_forwardWhat is the difference between a diode and rectifier?arrow_forwardHere are some statements about a p-n junction diode. Some are TRUE and some are FALSE. i. Applying a negative bias to the p-side and a positive bias to the n-side allows a forward current flow. ii. When the p-n junction is under reverse bias, the Fermi level is continuous across the junction. iii. The forward bias current is made up of holes from the p-side and electrons from the n-side flowing across the junction. iv. Under reverse bias, you can get minority electrons flowing from the p-side to the n-side of the junction. v. To get a large built-in voltage, you need to heavily dope the p-side and n-side of the junction. vi. The built-in voltage (or contact potential) of a p-n junction is typically twice the value of the band-gap of the semiconductor. Which of the following statements is correct: (i) and (ii) are both FALSE (ii) and (v) are both FALSE (iii) and (vi) are both FALSEarrow_forward
- USING D1 1N4001G or SILICON DIODE.arrow_forwardC. In the circuit shown below the knee current for the ideal Zener diode is 10 mA Calculate the minimum value of load resistance RL in order to maintain 5 volts across the load resistance RL 2. WW-arrow_forwardConsider the circuit shown in Figure 2. The cut-in voltage of each diode is . Let and assume both diodes are conducting. Determine if this is a valid assumption and explain your answer. And calculate the values of IR, ID, Ip2, and V.. Rj =1.7 kQ ww VB =1 V D1 Dz R2D 4 kQ Figure 2arrow_forward
- In RL load connected (without free transition diode), single phase, uncontrolled, full wave rectifier (4 diodes), the source voltage is sinusoidal and its effective value is 44Volt, 50 Hz. The ohmic load value connected to the circuit is 10 ohms. Average value of load current calculate. (L>>R) a) 4.16 A b) 3.46 A C) 3.26A d) 4.56 A e) 3.96 Aarrow_forwarda) What is n-type semiconductor materials? What are the majority and the minority cariers? b) What is p-type semiconductor materials? What are the majority and the minority cariers? c) What is depletion region of a p-n junction diode? d) Describe in your own words the forward-bias and reverse- bias conditions of a p-n junction diode. e) Draw a Diode Symbol and label the anode and the cathode. Si Ge 2 ka f) Find V, in the circuit shown in +20 V 2 k2 15V Fig. Fuad Al-Mannai EENG261 Page 1arrow_forwardSolve for the given unknowns.arrow_forward
- For the rectifier in the figure below, state the conduction sequence of the diodes for periods t1 to tó. D1 D2 D3 22) tl: D. & D.. 23) t2: D. & D.. 24) t3: D. & D.. 25) t4: D. & D.. D4 D5 D6 26) t5: D. &D. 27) t6: D.AN A & D....... Vm cot t6arrow_forwardConsider the circuit with three diodes and a AC input, as shown below: D2 R1 D1 D3 R2 Assume that the input AC voltage is Ttsin(100TTT). You may consider the diodes to be ideal. mean voltage generated across resistor R2 is (assuming current direction to be from AC so into R1, through diode network, and through R2 from top to bottom): O a. 0.5V Ob. -0.5V O c. 1V O d. OVarrow_forwardIn each of the ideal-diode circuits shown below V1 is a 1kHz, 10-V peak sine wave. Sketch the waveform resulting at V0. What are its positive and negative peak values?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage LearningDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
What is an electric furnace and how does it work?; Author: Fire & Ice Heating and Air Conditioning Inc;https://www.youtube.com/watch?v=wjAWecPGi0M;License: Standard Youtube License