Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.35P
To determine
The value of diode current and voltage.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a)
Design a clamper circuit so that for the input waveform V,(t) as given in Figure 4(a),
the output waveform V,(t) as shown in Figure 4(b) can be produced. You shall use ideal
diode as part of your circuit design and provide the analysis of your design procedure
with the aid of the simplified equivalent circuits.
V(t)
10v-
t2
t3
t4
t5
-10V
(a)
V.(t)
15V
t1
to
t3
t4
t5
-5V
(b)
Figure 4
4. Design a circuit that will satisfy the input/output relation using the following
components : DC supply, 1 kilo ohm resistor , and
a.) Ideal diode
b. ) germanium diode
Solutions : Circuit Designs with multisim operations and you can choose multiples of
input voltages up to 10 volts.
Vi (V)
+Vo (V)
10
10
5+
-5
-5-
-10+
-7.5T
a) To what value R must be adjusted in the following circuit to make IZ = 70 mA. Assume VZ =20 V at 65 mA and ZZ = 23 Ω.
What is the Zener voltage at 70o C, if it has a positive TC of 0.08 %/oC.?
b) Using a Complete diode model, find the diode current (ID), diode voltage (VD), and output voltage (Vo) for the diode circuit shown below. Given that: Vs = 20 V, RL=3 kΩ , Barrier Potential VF = 0.3 V , and r’d = 70 Ω.
If the diode was reversed and IR = 200 µA, Determine the diode reverse voltage (VR)
Chapter 4 Solutions
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Ch. 4.1 - Prob. 4.1ECh. 4.1 - Prob. 4.2ECh. 4.1 - Prob. 4.3ECh. 4.1 - Prob. 4.4ECh. 4.1 - Prob. 4.5ECh. 4.2 - Prob. 4.6ECh. 4.2 - Prob. 4.7ECh. 4.2 - Prob. 4.8ECh. 4.2 - Prob. 4.9ECh. 4.3 - Prob. 4.10E
Ch. 4.3 - Prob. D4.11ECh. 4.3 - Prob. 4.12ECh. 4.3 - Prob. 4.13ECh. 4.3 - Prob. 4.14ECh. 4.3 - Prob. D4.15ECh. 4.4 - Prob. 4.16ECh. 4.4 - Prob. 4.17ECh. 4.4 - Prob. 4.18ECh. 4.5 - Prob. 4.19ECh. 4.5 - Prob. 4.20ECh. 4.5 - Prob. 4.21ECh. 4.5 - Prob. 4.22ECh. 4.5 - Prob. 4.23ECh. 4.5 - Prob. 4.24ECh. 4.5 - Prob. 4.25ECh. 4.6 - Prob. 4.26ECh. 4.6 - Prob. 4.27ECh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. D4.7PCh. 4 - Prob. D4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. D4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. D4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. D4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. D4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. D4.56PCh. 4 - Prob. D4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. D4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. D4.63PCh. 4 - Prob. D4.64PCh. 4 - Prob. D4.65PCh. 4 - Prob. D4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. D4.73PCh. 4 - Prob. D4.74PCh. 4 - Prob. D4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. D4.80PCh. 4 - Prob. D4.81PCh. 4 - Prob. D4.82PCh. 4 - Prob. D4.83PCh. 4 - Prob. D4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - Prob. 4.89PCh. 4 - Prob. 4.90PCh. 4 - Prob. 4.91PCh. 4 - Prob. 4.92PCh. 4 - Prob. 4.93PCh. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - Prob. 4.97P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- a) To what value R must be adjusted in the following circuit to make IZ = 70 mA. Assume VZ =20 V at 65 mA and ZZ = 23 Ω. What is the Zener voltage at 70o C, if it has a positive TC of 0.08 %/oC.? b) Using a Complete diode model, find the diode current (ID), diode voltage (VD), and output voltage (Vo) for the diode circuit shown below. Given that: Vs = 20 V, RL=3 kΩ , Barrier Potential VF = 0.3 V , and r’d = 70 Ω. If the diode was reversed and IR = 200 µA, Determine the diode reverse voltage (VR)arrow_forwardV₂ VD,on = 800mV for the constant-voltage diode model. (1) Plot the input/output characteristics of the circuits below (a-c) using a constant-voltage diode model. Also, assume that VB = 1V. Vin D₁ VB +1 + R₁ Vout (a) Vin D₁ + R₁ (b) VB + Vout Vin VB R₁ D₁ (c) MMK + Voutarrow_forward2. For the circuit shown below, find the current in and voltage V1. Assume the forward bias voltage of the diode is 0.7V. The easiest way to think about this problem is to consider what the circuit does BEFORE the diode is added, i.e., compute V1 without the diode, then add the diode to see if it alters the circuit behavior. 5 V ww 3 ΚΩ V1 ww 2 ΚΩ 5 V +arrow_forward
- For the circuit below with E = 10 V, R = 5800 N. Find the following: a) current in the circuit b) voltage across the diode c) voltage across the resistor Anode (A) Cathode (K) b E R wwwwarrow_forwardPls. answer letter B onlyarrow_forwardQ4- For the circuits in Figure 4 a,b,c,d,e, each utilizing an ideal diode (or diodes), sketch the output for the input shown below. Label the most positive and most negative output levels. Assume CR >> T. +10 V – -10 V T=I ms 2R 2R Figure 4arrow_forward
- A diode has IS = 5 aA and n = 1. (a) What is the diode voltage if the diode current is 100 μA? (b) What is the diode voltage if the diode current is 10μA?(c)What is the diode current for vD =0V? (d) What is the diode current for vD =− 0.06 V? (e) What is the diode current for vD =−4 V?arrow_forwardIn the circuit shown below, if the diode current is given by I = 1,(eva/Vr - 1), where Vr = 25 mV, and Va is the diode forward %3D voltage. Is = 1µA and R = 100 kN. Find Vi such that Vo = 0 V. %3D Vo Vi V1=R*ls H44arrow_forwardFor the diode circuits shown below, find the values of I and V indicated. a) Using the constant-voltage-drop model (VD=0.7V):arrow_forward
- Please show all work, thank you :)arrow_forwardYou can assume any values just please note them. I just want to have this circuit working at all conditions. Or at least see the process so I can do it on my own with my own calculationsarrow_forward4) Design a circuit that will satisfy the input/output relation below using the following components: DC supply, 1k resistor and a) Ideal diode b) silicon diode Vi (V) Vo (V) 10- am 5 10 -5 -10 -5 -7.5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
How Do Hall Effect Sensors Work? - The Learning Circuit; Author: element14 presents;https://www.youtube.com/watch?v=dgyB2-1VDI0;License: Standard Youtube License