The moles of Na + ions required to replace 0.015 M Ca 2 + and 0.0010 M Fe 3 + in 1.0 × 10 3 L of hard water is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per liter of solution. Unit of molarity is mol/L . The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows: Moles of compound ( mol ) = [ volume of solution ( L ) ( molarity of solution ( mol ) 1L of solution ) ] The expression to calculate the moles of charge from an ion when moles of ion and mole of charge on ion are given is as follows: Moles of charge from ion ( mol ) = [ moles of ion ( mol ) ( mole of charge on ion ( mol ) 1 mol of ion ( mol ) ) ]
The moles of Na + ions required to replace 0.015 M Ca 2 + and 0.0010 M Fe 3 + in 1.0 × 10 3 L of hard water is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per liter of solution. Unit of molarity is mol/L . The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows: Moles of compound ( mol ) = [ volume of solution ( L ) ( molarity of solution ( mol ) 1L of solution ) ] The expression to calculate the moles of charge from an ion when moles of ion and mole of charge on ion are given is as follows: Moles of charge from ion ( mol ) = [ moles of ion ( mol ) ( mole of charge on ion ( mol ) 1 mol of ion ( mol ) ) ]
The moles of Na+ ions required to replace 0.015M Ca2+ and 0.0010M Fe3+ in 1.0×103 L of hard water is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per liter of solution. Unit of molarity is mol/L.
The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows:
Moles of compound(mol)=[volume of solution(L)(molarityofsolution(mol)1L of solution)]
The expression to calculate the moles of charge from an ion when moles of ion and mole of charge on ion are given is as follows:
Moles of charge from ion(mol)=[moles of ion(mol)(mole of charge on ion(mol)1mol of ion(mol))]
Draw the major product of
this reaction. Ignore inorganic
byproducts.
Assume that the water side
product is continuously
removed to drive the reaction
toward products.
(CH3)2NH,
TSOH
Drawing
So, the first image is what I'm trying to understand regarding my approach. The second image illustrates my teacher's method, and the third image includes my notes on the concepts behind these types of problems.
HAND DRAW
Chapter 4 Solutions
Chemistry: The Molecular Nature of Matter and Change
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.