The molarity of the sodium hydroxide solution that was standardized by the titration of the solution with 25.00 mL of 0.1528 M standard hydrochloric acid and the initial and final reading of burette is 2.24 mL and 39.21 mL respectively is to be calculated. Concept Introduction: Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociates completely in water to release H + ions and OH − ions. Hydrochloric acid ( HCl ) is a strong acid and sodium hydroxide ( NaOH ) is a strong base. Sodium hydroxide ( NaOH ) and hydrochloric acid ( HCl ) both dissociates completely into their ions. They both react to form sodium chloride and water molecule. The molecular equation for the acid-base reaction of hydrochloric acid and sodium hydroxide is: HCl ( a q ) + NaOH ( a q ) → NaCl ( a q ) + H 2 O ( l )
The molarity of the sodium hydroxide solution that was standardized by the titration of the solution with 25.00 mL of 0.1528 M standard hydrochloric acid and the initial and final reading of burette is 2.24 mL and 39.21 mL respectively is to be calculated. Concept Introduction: Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociates completely in water to release H + ions and OH − ions. Hydrochloric acid ( HCl ) is a strong acid and sodium hydroxide ( NaOH ) is a strong base. Sodium hydroxide ( NaOH ) and hydrochloric acid ( HCl ) both dissociates completely into their ions. They both react to form sodium chloride and water molecule. The molecular equation for the acid-base reaction of hydrochloric acid and sodium hydroxide is: HCl ( a q ) + NaOH ( a q ) → NaCl ( a q ) + H 2 O ( l )
The molarity of the sodium hydroxide solution that was standardized by the titration of the solution with 25.00 mL of 0.1528M standard hydrochloric acid and the initial and final reading of burette is 2.24 mL and 39.21 mL respectively is to be calculated.
Concept Introduction:
Strong acids and strong bases are the substance that dissociates completely into its ions when dissolved in the solution. They dissociates completely in water to release H+ ions and OH− ions.
Hydrochloric acid (HCl) is a strong acid and sodium hydroxide (NaOH) is a strong base. Sodium hydroxide (NaOH) and hydrochloric acid (HCl) both dissociates completely into their ions. They both react to form sodium chloride and water molecule.
The molecular equation for the acid-base reaction of hydrochloric acid and sodium hydroxide is:
Can you please help mne with this problem. Im a visual person, so can you redraw it, potentislly color code and then as well explain it. I know im given CO2 use that to explain to me, as well as maybe give me a second example just to clarify even more with drawings (visuals) and explanations.
Part 1. Aqueous 0.010M AgNO 3 is slowly added to a 50-ml solution containing both carbonate [co32-] = 0.105 M
and sulfate [soy] = 0.164 M anions. Given the ksp of Ag2CO3 and Ag₂ soy below. Answer the ff:
Ag₂ CO3 = 2 Ag+ caq) + co} (aq)
ksp = 8.10 × 10-12
Ag₂SO4 = 2Ag+(aq) + soy² (aq) ksp = 1.20 × 10-5
a) which salt will precipitate first?
(b)
What % of the first anion precipitated will remain in the solution.
by the time the second anion starts to precipitate?
(c) What is the effect of low pH (more acidic) condition on the separate of the carbonate and
sulfate anions via silver precipitation? What is the effect of high pH (more basic)? Provide appropriate
explanation per answer
Part 4. Butanoic acid (ka= 1.52× 10-5) has a partition coefficient of 3.0 (favors benzene) when distributed bet.
water and benzene. What is the formal concentration of butanoic acid in each phase when
0.10M aqueous butanoic acid is extracted w❘ 25 mL of benzene
100 mL of
a) at pit 5.00
b) at pH 9.00
Chapter 4 Solutions
Chemistry: The Molecular Nature of Matter and Change
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.