Molarity of the solution resulting from dissolving 46.0 g of silver nitrate in enough water to give a final volume of 335 mL is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L . The expression to calculate the molarity of a solution when moles of solute and volume of solution are given is as follows: Molarity of solution ( M ) = moles of solute ( mol ) volume of solution ( L ) The expression to calculate the mass of solute when moles and molecular mass of compound are given is as follows: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol / L . The expression to calculate the molarity of a solution when moles of solute and volume of solution are given is as follows: Molarity of solution ( M ) = moles of solute ( mol ) volume of solution ( L ) The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows: Moles of compound ( mol ) = [ given mass of compound ( g ) ( 1mole of compound ( mol ) molecular mass of compound ( g ) ) ]
Molarity of the solution resulting from dissolving 46.0 g of silver nitrate in enough water to give a final volume of 335 mL is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L . The expression to calculate the molarity of a solution when moles of solute and volume of solution are given is as follows: Molarity of solution ( M ) = moles of solute ( mol ) volume of solution ( L ) The expression to calculate the mass of solute when moles and molecular mass of compound are given is as follows: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol / L . The expression to calculate the molarity of a solution when moles of solute and volume of solution are given is as follows: Molarity of solution ( M ) = moles of solute ( mol ) volume of solution ( L ) The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows: Moles of compound ( mol ) = [ given mass of compound ( g ) ( 1mole of compound ( mol ) molecular mass of compound ( g ) ) ]
Molarity of the solution resulting from dissolving 46.0 g of silver nitrate in enough water to give a final volume of 335 mL is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the molarity of a solution when moles of solute and volume of solution are given is as follows:
Molarity of solution(M)=moles of solute(mol)volume of solution(L)
The expression to calculate the mass of solute when moles and molecular mass of compound are given is as follows:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the molarity of a solution when moles of solute and volume of solution are given is as follows:
Molarity of solution(M)=moles of solute(mol)volume of solution(L)
The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows:
Moles of compound(mol)=[given massof compound(g)(1moleof compound(mol)molecular mass of compound(g))]
(b)
Interpretation Introduction
Interpretation:
The volume (L) of 0.385Mmanganese(II)sulfate that contains 63.0 g of solute is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the volume of the solution when the amount of compound in moles and molarity of solution are given is as follows:
Volume of solution(L)=moles of solute(mol)(1L of solutionmolarity of solution(mol))
The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows:
Moles of compound(mol)=[given massof compound(g)(1moleof compound(mol)molecular mass of compound(g))]
(c)
Interpretation Introduction
Interpretation:
The volume (mL) of 6.44×10−2M adenosine triphosphate (ATP) that contains 1.68 mmol of ATP is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the volume of a solution when moles of solute and molarity of solution are given is as follows:
Volume of solution(L)=moles of solute(mol)Molarity of solution(M)
1) Suppose 0.1 kg ice at 0°C (273K) is in 0.5kg water at 20°C (293K). What is the change in entropy of the ice as it melts at 0°?
To produce the original "water gas" mixture, carbon (in a combustible form known as coke) is reacted with steam: 131.4 kJ + H20(g) + C(s) → CO(g) + H2(g) From this information and the equations in the previous problem, calculate the enthalpy for the combustion or carbon to form carbon dioxide.
kindly show me how to solve both parts of the same long problem. Thanks
we were assigned to dilute 900ppm
in to 18ppm by using only 250ml vol
flask. firstly we did calc and convert
900ppm to 0.9 ppm to dilute in 1 liter.
to begin the experiment we took
0,225g of kmno4 and dissolved in to
250 vol flask. then further we took 10
ml sample sol and dissolved in to 100
ml vol flask and put it in to a
spectrometer and got value of 0.145A
.
upon further calc we got v2 as 50ml
. need to find DF, % error (expval and
accptVal), molarity, molality. please
write the whole report. thank you
The format, tables, introduction,
procedure and observation, result,
calculations, discussion and
conclusion
Q5. Predict the organic product(s) for the following transformations. If no reaction will take place
(or the reaction is not synthetically useful), write "N.R.". Determine what type of transition state
is present for each reaction (think Hammond Postulate).
I
Br₂
CH3
F2, light
CH3
Heat
CH3
F₂
Heat
Br2, light
12, light
CH3
Cl2, light
No
Chapter 4 Solutions
Chemistry: The Molecular Nature of Matter and Change