4.31. Each night different meteorologists give us the probability that it will rain the next day. To judge how well these people predict, we will score each of them as follows: If a meteorologist says that it will rain with probability p, then he or she will receive a score of 1 − ( 1 − p ) 2 if it. does rain 1 − p 2 if it does not rain We will then keep track of scores over a certain time span and conclude that the meteorologist with the highest average score is the best predictor of weather. Suppose now that a given meteorologist is aware of our scoring mechanism and wants to maximize his or her expected score. If this person truly believes that it will rain tomorrow with probability p* what value of p should he or she assert so as to maximize the expected score?
4.31. Each night different meteorologists give us the probability that it will rain the next day. To judge how well these people predict, we will score each of them as follows: If a meteorologist says that it will rain with probability p, then he or she will receive a score of 1 − ( 1 − p ) 2 if it. does rain 1 − p 2 if it does not rain We will then keep track of scores over a certain time span and conclude that the meteorologist with the highest average score is the best predictor of weather. Suppose now that a given meteorologist is aware of our scoring mechanism and wants to maximize his or her expected score. If this person truly believes that it will rain tomorrow with probability p* what value of p should he or she assert so as to maximize the expected score?
Solution Summary: The author explains the value of p that maximizes the expected score.
4.31. Each night different meteorologists give us the probability that it will rain the next day. To judge how well these people predict, we will score each of them as follows: If a meteorologist says that it will rain with probability p, then he or she will receive a score of
1
−
(
1
−
p
)
2
if it. does rain
1
−
p
2
if it does not rain We will then keep track of scores over a certain time span and conclude that the meteorologist with the highest average score is the best predictor of weather. Suppose now that a given meteorologist is aware of our scoring mechanism and wants to maximize his or her expected score. If this person truly believes that it will rain tomorrow with probability p* what value of p should he or she assert so as to maximize the expected score?
The Martinezes are planning to refinance their home. The outstanding balance on their original loan is $150,000. Their finance company has offered them two options. (Assume there are no additional finance charges. Round your answers to the nearest cent.)
Option A: A fixed-rate mortgage at an interest rate of 4.5%/year compounded monthly, payable over a 30-year period in 360 equal monthly installments.Option B: A fixed-rate mortgage at an interest rate of 4.25%/year compounded monthly, payable over a 12-year period in 144 equal monthly installments.
(a) Find the monthly payment required to amortize each of these loans over the life of the loan.
option A $
option B $
(b) How much interest would the Martinezes save if they chose the 12-year mortgage instead of the 30-year mortgage?
The Martinezes are planning to refinance their home. The outstanding balance on their original loan is $150,000. Their finance company has offered them two options. (Assume there are no additional finance charges. Round your answers to the nearest cent.)
Option A: A fixed-rate mortgage at an interest rate of 4.5%/year compounded monthly, payable over a 30-year period in 360 equal monthly installments.Option B: A fixed-rate mortgage at an interest rate of 4.25%/year compounded monthly, payable over a 12-year period in 144 equal monthly installments.
(a) Find the monthly payment required to amortize each of these loans over the life of the loan.
option A $
option B $
(b) How much interest would the Martinezes save if they chose the 12-year mortgage instead of the 30-year mortgage?
When a tennis player serves, he gets two chances to serve in bounds. If he fails to do so twice, he loses the point. If he
attempts to serve an ace, he serves in bounds with probability 3/8.If he serves a lob, he serves in bounds with probability
7/8. If he serves an ace in bounds, he wins the point with probability 2/3. With an in-bounds lob, he wins the point with
probability 1/3. If the cost is '+1' for each point lost and '-1' for each point won, the problem is to determine the optimal
serving strategy to minimize the (long-run)expected average cost per point. (Hint: Let state 0 denote point over,two
serves to go on next point; and let state 1 denote one serve left.
(1). Formulate this problem as a Markov decision process by identifying the states and decisions and then finding the
Cik.
(2). Draw the corresponding state action diagram.
(3). List all possible (stationary deterministic) policies.
(4). For each policy, find the transition matrix and write an expression for the…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License