Two balls are chosen randomly from an urn containing 8 white, 4 black, and 2 orange balls. Suppose that we win $2 for each black ball selected and we lose $1 for each white ball selected. Let X denote our winnings. What are the possible values of X, and what are the probabilities associated with each value?
Two balls are chosen randomly from an urn containing 8 white, 4 black, and 2 orange balls. Suppose that we win $2 for each black ball selected and we lose $1 for each white ball selected. Let X denote our winnings. What are the possible values of X, and what are the probabilities associated with each value?
Two balls are chosen randomly from an urn containing 8 white, 4 black, and 2 orange balls. Suppose that we win $2 for each black ball selected and we lose $1 for each white ball selected. Let X denote our winnings. What are the possible values of X, and what are the probabilities associated with each value?
Video Video
Expert Solution & Answer
To determine
To conclude: The possible values of X and the probabilities associated with each value.
Answer to Problem 4.1P
x
1
2
3
4
p(x)
2/7
3/13
1/6
1/11
Explanation of Solution
Given:
In an urn, there are 8 white, 4 black and 2 orange balls. If player will select a black ball then he will win $2 and if not then he will lose $1 for each white ball selected.
Calculation:
Consider that B and W are defined as black and white.
Further, consider that there are 4 black balls.
Hence, X’s possible values are 1,2,3, and 4.
The probability that select 1,2,3 and 4 black ball, respectively is:
P(X=1)=n(b)(Number of available black balls)n=414=27
P(X=2)=n(b)(Number of available black balls)n=313=313
P(X=3)=n(b)(Number of available black balls)n=212=16
P(X=4)=n(b)(Number of available black balls)n=111
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Answer questions 8.3.3 and 8.3.4 respectively
8.3.4 .WP An article in Medicine and Science in Sports and
Exercise [“Electrostimulation Training Effects on the Physical Performance of Ice Hockey Players” (2005, Vol. 37, pp.
455–460)] considered the use of electromyostimulation (EMS) as
a method to train healthy skeletal muscle. EMS sessions consisted of 30 contractions (4-second duration, 85 Hz) and were carried
out three times per week for 3 weeks on 17 ice hockey players.
The 10-meter skating performance test showed a standard deviation of 0.09 seconds. Construct a 95% confidence interval of the
standard deviation of the skating performance test.
8.6.7 Consider the tire-testing data in Exercise 8.2.3. Compute a 95% tolerance interval on the life of the tires that has confidence level 95%. Compare the length of the tolerance interval with the length of the 95% CI on the population mean. Which interval is shorter? Discuss the difference in interpretation of these two intervals.
8.6.2 Consider the natural frequency of beams described in
Exercise 8.2.8. Compute a 90% prediction interval on the
diameter of the natural frequency of the next beam of this type
that will be tested. Compare the length of the prediction interval
with the length of the 90% CI on the population mean.
8.6.3 Consider the television tube brightness test described in
Exercise 8.2.7. Compute a 99% prediction interval on the brightness of the next tube tested. Compare the length of the prediction
interval with the length of the 99% CI on the population mean.
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License