
A First Course in Probability (10th Edition)
10th Edition
ISBN: 9780134753119
Author: Sheldon Ross
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.11TE
Let X be the number of successes that result from 2n independent trials, when each trial is a success with
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
iid
B1 Suppose X1, ..., Xn
fx(x), where
2
fx(x) = x exp(−x²/0),
0<< (0 otherwise).
(a) Find the maximum likelihood estimator of 0.
(b) Show that the MLE is an unbiased estimator of 0.
(c) Find the MSE of the MLE.
Hint: For parts (b) and (c), you may use integration by parts.
2) Suppose we select two values x and y independently from the uniform distribution on
[0,1]. What is the probability that xy
1
2
100 identical balls are rolling along a straight line. They all have speed equal to v, but some of them might move in opposite directions. When two of them collide they immediately switch their direction and keep the speed v. What is the maximum number of collisions that can happen?
Let f(w) be a function of vector w Є RN, i.e. f(w) = 1+e Determine the first derivative and matrix of second derivatives off with respect to w.
Let A Є RN*N be a symmetric, positive definite matrix and bЄ RN a vector. If x ER, evaluate the integral Z(A,b) = e¯xAx+bx dx as a function of A and b.
John throws a fair die with faces labelled 1 to 6. ⚫ He gains 10 points if the die shows 1. ⚫ He gains 1 point if the die shows 2 or 4. • No points are allocated otherwise. Let X be the random variable describing John's gain at each throw. Determine the variance of X.
Chapter 4 Solutions
A First Course in Probability (10th Edition)
Ch. 4 - Two balls are chosen randomly from an urn...Ch. 4 - Two fair dice are rolled, Let X equal the product...Ch. 4 - Three dice are rolled. By assuming that each of...Ch. 4 - Five men and 5 women are ranked according to their...Ch. 4 - Let X represent the difference between the number...Ch. 4 - In Problem 4.5 for n=3, if the coin is assumed...Ch. 4 - Suppose that a die is rolled twice. What are the...Ch. 4 - If the die in Problem 4.7 is assumed fair,...Ch. 4 - Repeat Example 1c, when the balls are selected...Ch. 4 - Let X be the winnings of a gambler. Let...
Ch. 4 - The random variable X is said to follow the...Ch. 4 - In the game of Two-Finger Morra, 2 players show 1...Ch. 4 - A salesman has scheduled two appointments to sell...Ch. 4 - Five distinct numbers are randomly distributed to...Ch. 4 - The National Basketball Association (NBA) draft...Ch. 4 - A deck of n cards numbered 1 through n are to be...Ch. 4 - Suppose that the distribution function of X is...Ch. 4 - Four independent flips of a fair coin are made....Ch. 4 - If the distribution function of X is given...Ch. 4 - A gambling book recommends the following winning...Ch. 4 - Four buses carrying 148 students from the same...Ch. 4 - Suppose that two teams play a series of games that...Ch. 4 - You have $1000, and a certain commodity presently...Ch. 4 - A and B play the following game: A writes down...Ch. 4 - Prob. 4.25PCh. 4 - One of the numbers I through 10 is randomly...Ch. 4 - An insurance company writes a policy to the effect...Ch. 4 - A sample of 3 items is selected at random from a...Ch. 4 - There are two possible causes for a breakdown of a...Ch. 4 - A person tosses a fair coin until a tail appears...Ch. 4 - 4.31. Each night different meteorologists give us...Ch. 4 - To determine whether they have a certain disease,...Ch. 4 - A newsboy purchases papers at 10 cents and sells...Ch. 4 - Prob. 4.34PCh. 4 - A box contains 5 red and 5 blue marbles. Two...Ch. 4 - Consider the friendship network described by...Ch. 4 - Consider Problem 4.22 t with i=2. Find the...Ch. 4 - Find Var (X) and Var (Y) for X and as given in...Ch. 4 - If E[X]=1 and var(X)=5, find a. E[(2+X)2]; b....Ch. 4 - A ball is drawn from an urn containing 3 white and...Ch. 4 - On a multiple-choice exam with 3 possible answers...Ch. 4 - A man claims to have extrasensory perception. As a...Ch. 4 - A and B will take the same 10-question...Ch. 4 - A communications channel transmits the digits 0...Ch. 4 - A satellite system consists of n components and...Ch. 4 - A student is getting ready to take an important...Ch. 4 - Suppose that it takes at least 9 votes from a...Ch. 4 - In some military courts, 9 judges are appointed....Ch. 4 - It is known that diskettes produced by a certain...Ch. 4 - When coin 1 is flipped, it lands on heads with...Ch. 4 - Each member of a population of size n is,...Ch. 4 - In a tournament involving players 1,2,3,4, players...Ch. 4 - Suppose that a biased coin that lands on heads...Ch. 4 - The expected number of typographical errors on a...Ch. 4 - The monthly worldwide average number of airplane...Ch. 4 - Approximately 80000 marriages took place in the...Ch. 4 - State your assumptions. Suppose that the average...Ch. 4 - A certain typing agency employs 2 typists. The...Ch. 4 - How many people are needed so that the probability...Ch. 4 - Suppose that the number of accidents occurring on...Ch. 4 - Compare the Poisson approximation with the correct...Ch. 4 - If you buy a lottery ticket in 50 lotteries, in...Ch. 4 - The number of times that a person contracts a cold...Ch. 4 - The probability of being dealt a full house in a...Ch. 4 - Consider n, independent trials, each of which...Ch. 4 - People enter a gambling casino at a rate of 1...Ch. 4 - The suicide rate in a certain state is 1 suicide...Ch. 4 - Each of 500 soldiers in an army company...Ch. 4 - A total of 2n people, consisting of n married...Ch. 4 - Prob. 4.70PCh. 4 - In response to an attack of 10 missiles, 500...Ch. 4 - A fair coin is flipped 10 times. Find the...Ch. 4 - At time 0, a coin that comes up heads with...Ch. 4 - Consider a roulette wheel consisting of 38 numbers...Ch. 4 - Two athletic teams play a series of games; the...Ch. 4 - Suppose in Problem 4.75 that the two teams are...Ch. 4 - An interviewer is given a list of people she can...Ch. 4 - Prob. 4.78PCh. 4 - Solve the Banach match problem (Example 8e) when...Ch. 4 - In the Banach matchbox problem, find the...Ch. 4 - An urn contains 4 white and 4 black balls. We...Ch. 4 - Suppose that a batch of 100 items contains 6 that...Ch. 4 - A game popular in Nevada gambling casinos is Keno,...Ch. 4 - In Example 81 what percentage of i defective lots...Ch. 4 - A purchaser of transistors buys them in lots of...Ch. 4 - There are three highways in the county. The number...Ch. 4 - Suppose that 10 balls are put into 5 boxes, with...Ch. 4 - There are k types of coupons. Independently of the...Ch. 4 - An urn contains 10 red, S black, and 7 green...Ch. 4 - There are N distinct types of coupons, and each...Ch. 4 - If X has distribution function F, what is the...Ch. 4 - If X has distribution function F, what is the...Ch. 4 - The random variable X is said to have the...Ch. 4 - Let N be a nonnegative integer-valued random...Ch. 4 - Let X be such that P{X=1}=p=1P{X=1}. Find c1 such...Ch. 4 - Let X be a random variable having expected value ...Ch. 4 - Find Var (X) if P(X=a)=(1)=p=1P(X=b)Ch. 4 - Show how the derivation of the binomial...Ch. 4 - Let X be a binomial random variable with...Ch. 4 - Let X be the number of successes that result from...Ch. 4 - Consider n independent sequential trials, each of...Ch. 4 - There are n components lined up in a linear...Ch. 4 - Let X be a binomial random variable with...Ch. 4 - A family has n children with probability pn,n1...Ch. 4 - Suppose that n independent tosses of a coin having...Ch. 4 - Let X be a Poisson random variable with parameter...Ch. 4 - Let X be a Poisson random variable with parameter ...Ch. 4 - Prob. 4.19TECh. 4 - Show that X is a Poisson random variable with...Ch. 4 - Consider n coins, each of which independently...Ch. 4 - From a set of n randomly chosen people, let Eij...Ch. 4 - An urn contains 2 n balls, of which 2 are numbered...Ch. 4 - Consider a random collection of n individuals. In...Ch. 4 - Here is another way to obtain a set of recursive...Ch. 4 - Suppose that the number of events that occur in a...Ch. 4 - Prove i=0nii!=1n!exxndx Hint: Use integration by...Ch. 4 - If X is a geometric random variable, show...Ch. 4 - Let X be a negative binomial random variable with...Ch. 4 - For a hyper geometric random variable,...Ch. 4 - Balls numbered I through N are in an urn. Suppose...Ch. 4 - A jar contains m+n chips, numbered 1, 2,. ., n+m....Ch. 4 - Prob. 4.33TECh. 4 - Prob. 4.34TECh. 4 - Prob. 4.35TECh. 4 - An urn initially contains one red and one blue...Ch. 4 - Prob. 4.37TECh. 4 - Prob. 4.1STPECh. 4 - Prob. 4.2STPECh. 4 - A coin that when flipped comes up heads with...Ch. 4 - Prob. 4.4STPECh. 4 - Suppose that P{X=0}=1P{X=1}. If E[X]=3Var(X), find...Ch. 4 - There are 2 coins in a bin. When one of them is...Ch. 4 - Prob. 4.7STPECh. 4 - Prob. 4.8STPECh. 4 - Prob. 4.9STPECh. 4 - An urn contains n balls numbered 1 through n. If...Ch. 4 - Prob. 4.11STPECh. 4 - Prob. 4.12STPECh. 4 - Each of the members of a 7-judge panel...Ch. 4 - Prob. 4.14STPECh. 4 - The number of eggs laid on a tree leaf by an...Ch. 4 - Each of n boys and n girls, independently and...Ch. 4 - A total of 2n people, consisting of n married...Ch. 4 - Prob. 4.18STPECh. 4 - Prob. 4.19STPECh. 4 - Show that if X is a geometric random variable with...Ch. 4 - Suppose that P{X=a}=p,P{X=b}=1p a. Show that Xbab...Ch. 4 - Prob. 4.22STPECh. 4 - Balls are randomly withdrawn, one at a time...Ch. 4 - Ten balls are to be distributed among 5 urns, with...Ch. 4 - For the match problem (Example 5m in Chapter 2),...Ch. 4 - Let be the probability that a geometric random...Ch. 4 - Two teams will play a series of games, with the...Ch. 4 - An urn has n white and m black balls. Balls are...Ch. 4 - Prob. 4.29STPECh. 4 - If X is a binomial random variable with parameters...Ch. 4 - Let X be the ith smallest number in a random...Ch. 4 - Balls are randomly removed from an urn consisting...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Find how many SDs above the mean price would be predicted to cost.
Intro Stats, Books a la Carte Edition (5th Edition)
1. How is a sample related to a population?
Elementary Statistics: Picturing the World (7th Edition)
True or False The quotient of two polynomial expressions is a rational expression, (p. A35)
Precalculus
NOTE: Write your answers using interval notation when appropriate.
CHECKING ANALYTIC SKILLS Fill in each blank ...
Graphical Approach To College Algebra
Let F be a continuous distribution function. If U is uniformly distributed on (0,1), find the distribution func...
A First Course in Probability (10th Edition)
23. A plant nursery sells two sizes of oak trees to landscapers. Large trees cost the nursery $120 from the gro...
College Algebra (Collegiate Math)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- Female Male Totals Less than High School Diploma 0.077 0.110 0.187 High School Diploma 0.154 0.201 0.355 Some College/University 0.141 0.129 0.270 College/University Graduate 0.092 0.096 0.188 Totals 0.464 0.536 1.000arrow_forwardFemale Male Totals Less than High School Diploma 0.077 0.110 0.187 High School Diploma 0.154 0.201 0.355 Some College/University 0.141 0.129 0.270 College/University Graduate 0.092 0.096 0.188 Totals 0.464 0.536 1.000arrow_forwardFemale Male Totals Less than High School Diploma 0.077 0.110 0.187 High School Diploma 0.154 0.201 0.355 Some College/University 0.141 0.129 0.270 College/University Graduate 0.092 0.096 0.188 Totals 0.464 0.536 1.000arrow_forward
- Female Male Totals Less than High School Diploma 0.077 0.110 0.187 High School Diploma 0.154 0.201 0.355 Some College/University 0.141 0.129 0.270 College/University Graduate 0.092 0.096 0.188 Totals 0.464 0.536 1.000arrow_forward6.54 Let Y₁, Y2,..., Y, be independent Poisson random variables with means 1, 2,..., An respectively. Find the a probability function of Y. b conditional probability function of Y₁, given that Y = m. Y₁ = m. c conditional probability function of Y₁+Y2, given that 6.55 Customers arrive at a department store checkout counter according to a Poisson distribution with a mean of 7 per hour. In a given two-hour period, what is the probability that 20 or more customers will arrive at the counter? 6.56 The length of time necessary to tune up a car is exponentially distributed with a mean of .5 hour. If two cars are waiting for a tune-up and the service times are independent, what is the probability that the total time for the two tune-ups will exceed 1.5 hours? [Hint: Recall the result of Example 6.12.] 6.57 Let Y, Y2,..., Y,, be independent random variables such that each Y, has a gamma distribution with parameters a, and B. That is, the distributions of the Y's might have different a's, but…arrow_forward6.82 6.83 6.84 6.85 *6.86 6.87 If Y is a continuous random variable and m is the median of the distribution, then m is such that P(Ym) = P(Y ≥ m) = 1/2. If Y₁, Y2,..., Y, are independent, exponentially dis- tributed random variables with mean ẞ and median m, Example 6.17 implies that Y(n) = max(Y₁, Y., Y) does not have an exponential distribution. Use the general form of FY() (y) to show that P(Y(n) > m) = 1 - (.5)". Refer to Exercise 6.82. If Y₁, Y2,..., Y,, is a random sample from any continuous distribution with mean m, what is P(Y(n) > m)? Refer to Exercise 6.26. The Weibull density function is given by -my" m-le-y/a f(y)= α 0. y > 0, elsewhere, where a and m are positive constants. If a random sample of size n is taken from a Weibull distributed population, find the distribution function and density function for Y(1) = min(Y1, Y2,Y). Does Y(1) = have a Weibull distribution? Let Y₁ and Y2 be independent and uniformly distributed over the interval (0, 1). Find P(2Y(1) 0, elsewhere,…arrow_forward
- 6.26 The Weibull density function is given by e-y/a f(y) = α 0. y > 0, elsewhere, where a and m are positive constants. This density function is often used as a model for the lengths of life of physical systems. Suppose Y has the Weibull density just given. Find a the density function of UY". b E(Y) for any positive integer k. 6.27 Let Y have an exponential distribution with mean ẞ. 6.28 6.29 a Prove that W = √Y has a Weibull density with α = ẞ and m = 2. b Use the result in Exercise 6.26(b) to give E(Yk/2) for any positive integer k. Let Y have a uniform (0, 1) distribution. Show that U = -2ln(Y) has an exponential distri- bution with mean 2. The speed of a molecule in a uniform gas at equilibrium is a random variable V whose density function is given by 6.30 6.31 6.32 f(v) = av²e-by², v > 0, where b = m/2kT and k, T, and m denote Boltzmann's constant, the absolute temperature, and the mass of the molecule, respectively. a Derive the distribution of W = mV2/2, the kinetic energy of…arrow_forwardQIA Let F-4c24, countible or, A, countible), show that is o-algebra. B Let (Fne N) is family of a-algebra on 2, prove that F. o-algebra Q2: Prove that: 1. X, is martingale -esin 2. M, -e sin B,, is martingale by using Ito formula Q3: A Let X, has stochastic differential with drift p(x)=-bx + c, and diffusion o²(x)=4x, let Y√X,, where X, ≥0, find dr B: Let X, -(-s), Ito integral process, find dx, and [x.xko). Q4: Let Y, =[x,dB, is Ito integral, such that X, is nonrandom process, find: التوزيع 1. The distribution of Y 2. The moment generating function of Y,.arrow_forwardSolve the following Probability Problem (solve all parts) HW 2.x. (Headless Hunt)The Headless Hunt is an organization of 88 Hogwarts ghosts so elite thateven Nearly Headless Nick was annually denied admission for decades,despite being The Gryffindor ghost. The ghosts love playing sports anddecided to get together and have either a Head Polo tournament or aHorseback Head-Juggling tournament. However, even if they are ghosts,they still have jobs so some of them might have an urgent haunting as-signment. In order for no one to be left behind they need to be able tosplit into teams of equal numbers. Head polo teams consist of 4 playerswhereas Horseback Head-Juggling teams have 11 players. Assume thatany number of them from 1 to 88 show up with equal probability. a) What is the probability they will be able to play one of the twotournaments?b) If in addition to the previous 2 sports there was one more option, atournament in Headless bowling which is played in teams of 8 players,what would…arrow_forward
- 42. Consider the following joint probability table. B₁ B2 B3 B4 A 0.09 0.22 0.15 0.20 A 0.03 0.10 0.09 0.12arrow_forwardEXERCISES 4.3 Mechanics 41. Consider the following contingency table. B B A 26 34 Ac 14 26 a. Convert the contingency table into a joint probability table. b. What is the probability that A occurs? ن فة What is the probability that A and B occur? d. Given that B has occurred, what is the probability that A occurs? e. Given that A has occurred, what is the probability that B occurs? f. Are A and B mutually exclusive events? Explain. g. Are A and B independent events? Explain. 42. Consider the following joint probability table. B₁ B2 B3 BA A 0.09 0.22 0.15 0.20 Ac 0.03 0.10 0.09 0.12arrow_forwardCan u make a room for mearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License