A and B play the following game: A writes down either number 1 or number 2, and B must guess which one. If the number that A has written down is i and B has guessed correctly, B receives i units from A. If B makes a wrong guess, B pays 3 4 unit to A. lf B randomizes his decision by guessing I with probability p and 2 with probability 1 − p , determine his expected gain if (a) A has written down number 1 and (b) A has written down number 2. What value of p maximizes the minimum possible value of B’s expected gain, and what is this maximin value? (Note that B’s expected gain depends not only on p, but also on what A does.) Consider now player A. Suppose that she also randomizes her decision, writing down number 1 with probability q. What is A’s expected loss if (c) B chooses number 1 and (d) B chooses number 2? What value of q minimizes A’s maximum expected loss? Show that the minimum of A’s maximum expected loss is equal to the maximum of B’s minimum expected gain. This result, known as the minimax theorem, was first established in generality by the mathematician John von Neumann and is the fundamental result in the mathematical discipline known as the theory of games. The common value is called the value of the game to player B.
A and B play the following game: A writes down either number 1 or number 2, and B must guess which one. If the number that A has written down is i and B has guessed correctly, B receives i units from A. If B makes a wrong guess, B pays 3 4 unit to A. lf B randomizes his decision by guessing I with probability p and 2 with probability 1 − p , determine his expected gain if (a) A has written down number 1 and (b) A has written down number 2. What value of p maximizes the minimum possible value of B’s expected gain, and what is this maximin value? (Note that B’s expected gain depends not only on p, but also on what A does.) Consider now player A. Suppose that she also randomizes her decision, writing down number 1 with probability q. What is A’s expected loss if (c) B chooses number 1 and (d) B chooses number 2? What value of q minimizes A’s maximum expected loss? Show that the minimum of A’s maximum expected loss is equal to the maximum of B’s minimum expected gain. This result, known as the minimax theorem, was first established in generality by the mathematician John von Neumann and is the fundamental result in the mathematical discipline known as the theory of games. The common value is called the value of the game to player B.
A and B play the following game: A writes down either number 1 or number 2, and B must guess which one. If the number that A has written down is i and B has guessed correctly, B receives i units from A. If B makes a wrong guess, B pays
3
4
unit to A. lf B randomizes his decision by guessing I with probability p and 2 with probability
1
−
p
, determine his expected gain if (a) A has written down number 1 and (b) A has written down number 2. What value of p maximizes the minimum possible value of B’s expected gain, and what is this maximin value? (Note that B’s expected gain depends not only on p, but also on what A does.)
Consider now player
A. Suppose that she also randomizes her decision, writing down number 1 with probability
q. What is A’s expected loss if (c) B chooses number 1 and (d) B chooses number 2? What value of q minimizes A’s maximum expected loss? Show that the minimum of A’s maximum expected loss is equal to the maximum of B’s minimum expected gain. This result, known as the minimax theorem, was first established in generality by the mathematician John von Neumann and is the fundamental result in the mathematical discipline known as the theory of games. The common value is called the value of the game to player B.
3. A different 7-Eleven has a bank of slurpee fountain heads. Their available flavors are as follows: Mountain
Dew, Mountain Dew Code Red, Grape, Pepsi and Mountain Dew Livewire. You fill five different cups full
with each type of flavor. How many different ways can you arrange the cups in a line if exactly two Mountain
Dew flavors are next to each other?
3.2.1
Answer questions 8.3.3 and 8.3.4 respectively
8.3.4 .WP An article in Medicine and Science in Sports and
Exercise [“Electrostimulation Training Effects on the Physical Performance of Ice Hockey Players” (2005, Vol. 37, pp.
455–460)] considered the use of electromyostimulation (EMS) as
a method to train healthy skeletal muscle. EMS sessions consisted of 30 contractions (4-second duration, 85 Hz) and were carried
out three times per week for 3 weeks on 17 ice hockey players.
The 10-meter skating performance test showed a standard deviation of 0.09 seconds. Construct a 95% confidence interval of the
standard deviation of the skating performance test.
8.6.7 Consider the tire-testing data in Exercise 8.2.3. Compute a 95% tolerance interval on the life of the tires that has confidence level 95%. Compare the length of the tolerance interval with the length of the 95% CI on the population mean. Which interval is shorter? Discuss the difference in interpretation of these two intervals.
Elementary Statistics Using The Ti-83/84 Plus Calculator, Books A La Carte Edition (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License